APPENDIX F TABLE OF CONTENTS | APPE | | F1: SOCIAL IMPACT ASSESSMENT UNDFISH COMMUNITY PROFILES | E1 1 | | | | | | |------|--|--|----------------|--|--|--|--|--| | | GKO | UNDFISH COMMUNITY FROFILES | Г 1-1 | | | | | | | 1.0 | ALASKA PENINSULA/ALEUTIAN ISLANDS REGION COMMUNITIES: UNALAS | | | | | | | | | | AKU | TAN, SAND POINT, AND KING COVE | F1 - 1 | | | | | | | | 1.1 | UNALASKA/DUTCH HARBOR | | | | | | | | | | Population | F1 -3 | | | | | | | | | Ethnicity | F1 - 5 | | | | | | | | | Age and Sex | F1 - 7 | | | | | | | | | Housing Types and Population Segments | | | | | | | | | | Links to the Groundfish Fishery | F1 - 10 | | | | | | | | | Harvesting | | | | | | | | | | Processing | | | | | | | | | | Support Services | F1 -2 0 | | | | | | | | | The Municipality and Revenues | | | | | | | | | | Other Local Business Activity | | | | | | | | | 1.2 | AKUTAN | | | | | | | | | 1.3 | SAND POINT AND KING COVE | F1 -3 1 | | | | | | | 2.0 | KOD | IAK REGION COMMUNITIES | F1 - 40 | | | | | | | | 2.1 | KODIAK | F1 -4 0 | | | | | | | | | Population | F1 -4 2 | | | | | | | | | Ethnicity | | | | | | | | | | Sex Composition | | | | | | | | | | Housing Types and Population Segments | F1 -4 6 | | | | | | | | | Seasonality of the Kodiak Economy | | | | | | | | | | Links to the Groundfish Fishery | F1 - 50 | | | | | | | | | Harvesting | F1 - 52 | | | | | | | | | Processing | | | | | | | | | | Support Services | F1 - 56 | | | | | | | 3.0 | WAS | HINGTON INLAND WATERS REGION | F1 - 58 | | | | | | | | 3.1 | SEATTLE | | | | | | | | | | Overview: Greater Seattle Area | | | | | | | | | | The Seattle 'Geography' of the Alaska Groundfish Fishery | | | | | | | | | | General Community Links | | | | | | | | | | The Ballard Interbay Northend Manufacturing Industrial Center | | | | | | | | | | Summary: Seattle and North Pacific/Groundfish Socioeconomic Issues | | | | | | | | | | Links to Specific Groundfishing Sectors | | | | | | | | | | Inshore Processing | | | | | | | | | | Motherships | | | | | | | | | | Catcher-Processor Sector | | | | | | | | | | Catcher Vessels | | | | | | | | APPENDIX F-2. REGIONAL ECONOMIC INDICATORS 1975-1999 | . F2-76 | |--|-------------------------------| | APPENDIX F3: POTENTIAL STELLER SEA LION SUBSISTENCE USE EFFECTS | . F3-85 | | LIST OF TABLES | | | Appendix F1 | | | Table 1.1-1. Estimates of Floating Population Community of Unalaska, 1990 | F1-5
F1-6
F1-7
F1-8 | | Table 1.1-7. Volume and Value of Fish Landed at Unalaska, 1977-1999 | | | Table 1.1-8. Total Processed Weight Contributed by Various Species Groups, by Year Unalaska/Dutch Harbor Table 1.1-9. Percentage of Total Processed Weight Contributed by Various Species Groups, by Year Unalaska/Dutch Harbor | ear, | | Table 1.1-10. Value of Processed Fish by Species Group and Year for Unalaska/Dutch Harbor, 19 2000 | 93- | | Table 1.1-11. Percentage of Total Processed Value Contributed by Various Species Groups, by Yeurolaska/Dutch Harbor | ear, | | Table 1.1-12. City of Unalaska, Ten Principal Employers, June 30, 2000. Table 1.1-13. Initial Bering Sea Pollock Allocations, 2000. Table 1.1-14. Allocations to Inshore Cooperatives by Community Base of Operations, 2000. Table 1.1-15. City of Unalaska General Fund Budget, Fiscal Years 1998-2001 | . F1-16
. F1-17
. F1-24 | | Table 1.1-16. City of Unalaska Selected Fisheries Related General Fund Revenues, Fiscal Years 1 2001 | | | Table 1.2-1. Ethnic Composition of Population Akutan; 2000 | . F1-28 | | Table 1.2-3. Population Composition by Sex Akutan; 1990 | . F1-32 | | Table 1.3-2. Ethnicity and Group Quarters Housing Information, King Cove, 1990 | . F1 -33 | | Table 1.3-5. Ethnicity and Group Quarters Housing Information, Sand Point, 1990 | . F1 - 33 | | Table 2.1-1. Kodiak Island Region Population 1880-2000 | F1-44 | | Table 2.1-3. Ethnic Composition of Population Kodiak City; 1970, 1980, 1990 & 2000 Table 2.1-4. Ethnicity and Group Quarters Housing Information, Kodiak, 1990 | . F1 -4 5 | | Table 2.1-6. Population by Sex, Kodiak City; 1970, 1980, and 1990 | . F1-46
. F1-50 | | Table 2.1-8. Volume and Value of Fish Landed at Kodiak, 1984-1999 | . F1-52 | | 1993-2000 | - | | Table 2.1-11. Value of Groundfish Processed by Kodiak Shoreplants, by Species Group and Year | | |---|-------------------| | Table 3.1-1. Estimated Volume and Value of Washington Distant Water Commercial Fish Harves | . F1-33
+ 1025 | | and 1988 | | | Table 3.1-2. Total Economic Contribution to the Washington State Commercial Fishing | | | Industry in 1988 | . F1-64 | | Table 3.1-3. Relationship of Estimated BINMIC Population and Employment to Local, Regional, | | | State Population and Employment | | | Table 3.1-4. BINMIC Employment by Industry Sector | . F1 -6 8 | | Appendix F2 | | | Table 1. Total Employment for Alaska Peninsula/Aleutian Islands Region, 1975-1999 | . F2-76 | | Table 2. Personal Income and Earnings for Alaska Peninsula/Aleutian Islands Region, 1975-1999 | F2-76 | | Table 3. Per Capita Income and Total Employment for Alaska Peninsula/Aleutian Islands Region, | 1975- | | 1999 | | | Table 4. Total Employment for Kodiak Island Region, 1975-1999 | | | Table 5. Personal Income and Earnings for Kodiak Island Region, 1975-1999 | | | Table 6. Per Capita Income and Total Employment for Kodiak Island Region, 1975-1999 | | | Table 7. Total Employment for Southcentral Region, 1975-1999 | | | Table 8. Personal Income and Earnings for Southcentral Alaska Region, 1975-1999 | | | Table 9. Per Capita Income and Total Employment for Southcentral Alaska Region, 1975-1999. | | | Table 10. Total Employment for Southeast Alaska Region, 1975-1999 | | | Table 11. Personal Income and Earnings for Southeast Alaska Region, 1975-1999 | | | Table 12. Per Capita Income and Total Employment for Southeast Alaska Region, 1975-1999 | | | Table 13. Total Employment for Washington Inland Waters Region, 1975-1999 | | | Table 14. Personal Income and Earnings for Washington Inland Waters Region, 1975-1999 Table 15. Per Capita Income and Total Employment for Washington Inland Waters Region, 1975- | | | Table 13. Fel Capita income and Total Employment for washington inland waters Region, 1975 | | | Table 16. Total Employment for Oregon Coast Region, 1975-1999 | | | Table 17. Total Non-Farm Earnings for Oregon Coast Region, 1975-1999 | | | Table 18. Per Capita Income and Total Employment for Oregon Coast Region, 1975-1999 | | | Table 16. Tel Capita medite and Total Employment for Olegon Coast Region, 1975-1999 | , 1 2-04 | | Appendix F3 | | | Table 1. Documented Subsistence Steller Sea Lion Harvest, Alaskan Coastal Communities | . F3-86 | | Table 2. Estimated Subsistence Take of Steller Sea Lions, by Alaska Region | . F3-87 | | Table 3. Estimated Subsistence Take of Steller Sea Lions, Aleutian and Pribilof Communities | . F3-87 | | Table 4. Estimated Take of Steller Sea Lions, Selected Other Alaskan Communities | . F3-88 | | LIST OF FIGURES | | | Figure 3.1-1. Sand Point Budget, 1995-2000 | . F1-37 | | Figure 2.1-1. Kodiak Seasonal Economic Fluctuations | | | - | | ## APPENDIX F1: SOCIAL IMPACT ASSESSMENT GROUNDFISH COMMUNITY PROFILES This appendix contains profiles of those communities most engaged in, and substantially dependent upon, the North Pacific groundfish fishery. These are communities in three regions, the Alaska Peninsula/ Aleutian Islands region, the Kodiak region, the Washington Inland Waters region, that have ties to multiple fisheries sectors. These sectors, in turn, are either significant components of the overall fishery or of the larger economic base of the community. ## 1.0 ALASKA PENINSULA/ALEUTIAN ISLANDS REGION COMMUNITIES: UNALASKA, AKUTAN, SAND POINT, AND KING COVE In this section, Alaska Peninsula/Aleutian Island region communities with the strongest direct links to the North Pacific groundfish fishery are profiled in detail. These are Unalaska, Akutan, Sand Point, and King Cove. Unalaska and Akutan are located on the Bering Sea side of the Alaska Peninsula/Aleutian Island chain, while Sand Point and King Cove are on the Gulf of Alaska side. Nonetheless, a substantial portion of the groundfish processed in Sand Point and King Cove is harvested in the Bering Sea. Historically, relatively small amounts of groundfish harvested in the GOA have been delivered for processing in Dutch Harbor/Unalaska and Akutan. At present, pollock and Pacific cod are the primary groundfish species landed and/or processed in these four ports. Alaska Department of Fish and Game fish ticket data indicate that in Dutch Harbor/Unalaska and Akutan, pollock represented 83 percent and 76 percent, respectively, of the 1997 total groundfish landings in these ports, with Pacific cod making up virtually all of the balance. In the case of Sand Point, pollock and Pacific cod, respectively, accounted for 69 percent and 29 percent of the total, with fractional percentages of other groundfish species accounting for the rest. In King Cove, this relationship was reversed, with pollock catch-share at 31 percent and Pacific cod at 69 percent of the groundfish total. In the case of pollock, surimi is the principal product, and fillets are a distant second, although product mix has been changing recently, with at least part of the change
attributed to changing conditions brought about by the American Fisheries Act (AFA). Several ancillary product forms (e.g., roe), as well as byproducts (e.g., white fish meal) are derived from pollock landings. Fillets are the primary product form produced from Pacific cod landings in these ports, although several lesser product forms (e.g., H&G) and byproducts (e.g., white fish meal) are also produced. The majority of the output from the processing operations in these landings ports is exported, principally to Asian markets, although some enters the domestic market for secondary processing and/or sale. While changes in any groundfish TAC or changes in the pattern of distribution, in either the GOA or BSAI management areas, could have indirect economic consequences for any or all of the principal ports, the impacts would be most severe and direct if pollock, and to only a lesser extent Pacific cod, TACs were in effect substantially reduced for whatever reason. Furthermore, these impacts would not be uniform in distribution across the four key Aleutian region groundfish landings ports, owing to geographic location, proximity to fishing grounds, plant capacity and capability difference, availability and variety of support facilities offered, and intermediate and final markets served. Historically, the processors in each of these ports competed directly with the mothership and catcher/processor fleets which participate in many of these same fisheries. However, due to the inshore/offshore allocations of pollock in the BSAI, and the subsequent AFA provisions and associated co- ops, the competition for pollock occurs in seafood markets, not on the fishing grounds. Each sector has different capabilities and limitations. And, while each supplies some amount of product into common markets, each also has developed the potential to focus a portion of its operation on specific markets. The following subsections examine the communities of Unalaska/Dutch Harbor, Kodiak, Sand Point, and King Cove. Limited information for Akutan is also presented. Each of these communities vary widely in their structure, history of engagement with the fishery, and contemporary engagement with the fishery. #### 1.1 UNALASKA/DUTCH HARBOR Unalaska is located approximately 800 miles southwest of Anchorage and 1,700 miles northwest of Seattle. Unalaska is the 11th largest city in Alaska, with a reported year-round population of just over 4,000. Dutch Harbor is the official name of the city's port, and is also often applied to the portion of the City of Unalaska located on Amaknak Island, which is connected by bridge to the rest of the community on Unalaska Island. The geographic feature of Dutch Harbor itself, along with Amaknak Island, is fully contained within the municipal boundaries of the City of Unalaska, which encompasses 115.8 square miles of land and 98.6 square miles of water. Unalaska is in a unique position with respect to the Bering Sea groundfish fishery. It is the site of both the most intense onshore and offshore sector activity. Unalaska is a community whose economy is strongly tied to Bering Sea commercial fisheries in general, and the groundfish fishery in particular. Among groundfish species, pollock plays a particularly important role in local operations. Unalaska has been variously described as a growing, developing, and maturing community. Whatever descriptor is chosen, during the span of years since the development of the groundfish fishery, Unalaska has seen an impressive amount of community development. The changes that have accompanied this development are both obvious and subtle. ## **Population** It has always been difficult to ascertain total population figures for Unalaska or, to state it more accurately, it is difficult to interpret and compare the figures given for the population of Unalaska over the years. Over the years, Unalaska has been a 'less than permanent' home to many individuals whose length of stay in the community has varied. Some individuals may stay in Unalaska only a fishing season or two; others may stay for many years before moving on. These individuals have been counted in different ways, or not counted at all, in a number of censuses. Caution must therefore be used in interpreting total population figures from various sources. Even though the total population of Unalaska has grown, the contemporary community maintains a relatively high transient population. This transient population includes workers at shore processing plants, although this particular population segment is notably less transient as the nature of the business of the shore plants has changed. Once characterized by rapid turnover during the King crab processing boom in the late 1970s, though more-or-less year-round processing during the early years of full-scale pollock processing, the current pattern is marked with peaks and valleys coinciding primarily with the pollock and, to a lesser extent, crab seasons, by maintenance of a 'core crew' of year round individuals who process lower volume species that are harvested at other times of the year and maintain the plant. (This topic is more fully addressed in the shore plant sector description in this document.) In addition to the shore-resident (some of whom are short-term residents) population, there are also a number of individuals who may be thought of as a "floating population" associated with the community. These individuals are from fishing fleets, floating processors, catcher/processors, and freighters that stop at the port of Unalaska for resupply. There are no current estimates of the "floating population," though such a figure was assembled for the year 1990 and is presented in Table 1.1-1 below. Although not true residents of the community of Unalaska, this "floating population" does have an impact on the community of Unalaska. They are associated with business and revenue generated in and for the city, and with services required of the City. Unalaska is, at least seasonally, where they live and work. Table 1.1-1. Estimates of Floating Population Community of Unalaska, 1990 | Vessel Type | Estimated Vessels | Average Crew Size | Floating Population | |---------------------------|-------------------|-------------------|---------------------| | Trawlers | · | <u> </u> | | | Catcher Vessels | 110 | 5 | 550 | | Catcher/Processors | 60 | 75 | 4,500 | | Floating Processors Only | 2 | 160 | 320 | | Longline | · | | | | Catcher Vessels | 100 | 6 | 600 | | Catcher/Processors | 20 | 25 | 500 | | Floating Processors Only | 16 | 25 | 400 | | Crab | | | | | Catcher Vessels | 225 | 5.5 | 1,238 | | Catcher/Processors | 25 | 22 | 550 | | Floating Processors Only | 13 | 70 | 910 | | Cargo Vessels | 350 | 25 | 8,750 | | Total Floating Population | | | 18,318 | Source: American Trawlers Assoc.; Alaska Crab Coalition; State of Alaska Dept. of Fish and Game; Resource Inventory and Analysis, Volume II, Aleutians West Coastal Resource Service Area, March 1990; The In-shore/Offshore Dispute; Impact of Factory Trawlers on Fisheries in the North Pacific and Proposals to Regulate the Fleet, The North Pacific Seafood Coalition, March 1990; and subsequent consultation with on-site resource Sinclair Wilt, Supervisor, Alyeska Seafoods, Unalaska. (Cited from Professional Growth Systems, Inc. 1990:12). It should not be assumed that the characterization of Unalaska's "non-transient" population is without its own difficulties, as the nature of the community has changed over the years. Discussion and analytical categorization of the less transient portions of the Unalaska population differ in various publications on the community. "Permanent" residents of the community have been described as those individuals for whom Unalaska is their community of orientation, independent of their employment status. "Semi-permanent" or "long-term transient" residents are those individuals for whom Unalaska is now their community of residence, but for whom residency decisions are based virtually exclusively on employment criteria. In other words, a "permanent resident," as that term is used in this document, is an individual who considers Unalaska "home" and is highly unlikely to move from the community due to termination of a particular job. These individuals tend to remain in the community and seek other employment if a specific job ends, and they also typically remain in the community after their retirement from the labor force. A "semi-permanent" or "longterm transient" resident, on the other hand, is an individual who typically has moved to Unalaska for a particular employment opportunity and is highly likely to leave the community if that specific employment opportunity is terminated for any reason. These individuals may indeed remain in the community for a number of years, but their residency decision-making process is predicated on Unalaska being first and foremost a work site. Obviously, the categories "permanent" and "semi-permanent" or "long-term transient" resident are not precise terms, nor do they necessarily correspond to administrative/regulatory decisions about 'official' residency (e.g., whether or not one is classified as an "Alaska resident" for employment statistical reporting or taxation purposes) but they are analytically useful where they conform to specific orientations toward the community that serve to shape community politics, development objectives, community perception, etc. #### Ethnicity Unalaska may be described as a plural or complex community in terms of the ethnic composition of its population. Although Unalaska was traditionally an Aleut community, the ethnic composition has changed with people moving into the community on both a short-term and long-term basis. Not surprisingly, in the latter half of this century, population fluctuations have coincided with periods of resource exploitation and scarcity. For example, the economic and demographic expansion associated with the King crab boom
in the late 1970s and early 1980s brought many non-Aleuts to Unalaska, including Euro-North Americans, Filipinos, Vietnamese, Koreans, and Hispanics. The Euro-American population shows a distinct change over the years, comprising around 30 percent of the population in 1970, over 60 percent in 1980 and 1990, and then back to 44 percent in 2000. The growth of Asian/Pacific Islander population (over 30 percent by 2000) is closely associated with the increasingly residential nature of the seafood processing sector workforce. The ethnic composition of Unalaska's population for the census years 1970, 1980, 1990, and 2000 appears in Table 1.1-2. Table 1.1-2. Ethnic Composition of Population Unalaska; 1970, 1980, 1990 & 2000 | | 1970 | | 1980 | | 1990 | | 2000 | | |---------------------------|------|-------|-------|-------|-------|-------|-------|-------| | Race/Ethnicity | N | % | N | % | N | % | N | % | | White | 56 | 31.0% | 848 | 64.1% | 1,917 | 62.1% | 1,893 | 44.2% | | African American | 0 | 0.0% | 19 | 1.5% | 63 | 2.0% | 157 | 3.7% | | Native Amer/
Alaskan | 113 | 63.4% | 200 | 15.1% | 259 | 8.4% | 330 | 7.7% | | Aleut | 107 | 60.1% | - | - | 223 | 7.2% | - | - | | Eskimo | 5 | 2.8% | - | - | 5 | 0.2% | - | - | | American Indian | 1 | 0.5% | - | - | 31 | 1.0% | - | - | | Asian/Pacific
Islands* | - | - | - | - | 593 | 19.2% | 1,336 | 31.2% | | Other** | 9 | 5.6% | 255 | 19.3% | 257 | 8.3% | 567 | 13.2% | | Total | 178 | 100% | 1,322 | 100% | 3,089 | 100% | 4,283 | 100% | ^{*} In the 2000 census, this was split into Native Hawaii and Other Pacific Islander (pop 24) and Asian (pop 1,312) Table 1.1-3 provides information on group housing and ethnicity for Unalaska. Group housing in the community is largely associated with the processing workforce. As shown, 52 percent of the population lived ^{**} In the 2000 census, this category was Some Other Race (pop 399) and Two or more races (pop 168). Source: 1970 data, University of Alaska, 1973; 1980, 1990, and 2000 data, U.S. Bureau of Census. The most dramatic population shift of this century, however, was brought about by World War II. The story of the War, and the implications for the Aleut population of Unalaska and the other Aleut communities of Unalaska Island, is too complex and profound for treatment in this limited community profile. It may be fairly stated, however, that the events associated with World War II, including the Aleut evacuation and the consolidation of the outlying villages, forever changed the community and Aleut sociocultural structure. in group housing in 1990. Also as shown, the total minority population proportion was substantially higher in group quarters (49 percent) than in non-group quarters (31 percent). Table 1.1-3. Ethnicity and Group Quarters Housing Information, Unalaska, 1990 | | Total Population | | Group (
Popu | - | Non-Group
Quarters
Population | | |---|------------------|---------|-----------------|---------|-------------------------------------|---------| | Unalaska City | Number | Percent | Number | Percent | Number | Percent | | White | 1917 | 62.06 | 870 | 53.90 | 1047 | 70.98 | | Black | 63 | 2.04 | 55 | 3.41 | 8 | 0.54 | | American Indian, Eskimo, Aleut | 259 | 8.38 | 20 | 1.24 | 239 | 16.20 | | Asian or Pacific Islander | 593 | 19.20 | 434 | 26.89 | 159 | 10.78 | | Other race | 257 | 8.32 | 235 | 14.56 | 22 | 1.49 | | Total Population | 3089 | 100.00 | 1614 | 100.00 | 1475 | 100.00 | | Hispanic origin, any race | 394 | 12.75 | 337 | 20.88 | 57 | 3.86 | | Total Minority Pop | 1252 | 40.53 | 795 | 49.26 | 457 | 30.98 | | Total Non-Minority Pop (White Non-Hispanic) | 1837 | 59.47 | 819 | 50.74 | 1018 | 69.02 | Source: Census 1990 STF2 Apart from the War years, prior to the growth of the current commercial-fisheries-based economy that traces its present configuration back to 1970s, Unalaska was traditionally an Aleut community. With the growth of the non-Aleut population, Aleut representation in the political and other public social arenas declined significantly. For example, in the early 1970s, Aleut individuals were in the majority on the city council; by the early 1980s, only one city council person was Aleut (IAI 1987:65). If one looks at Aleuts (or Alaska Natives) as a percentage of the total population, the change over the period of 1970 - 1990 is striking. In 1970, Aleut individuals made up slightly over 60 percent of the total community population (and Alaska Natives accounted for a total of 63 percent of the population). In 1980, Alaska Natives, including Aleuts, accounted for 15 percent of the population; by 1990, Aleuts comprised only 7 percent of the total community population (with Alaska Natives as a whole accounting for 8 percent of the population). Overall representation was similar in 2000. This population shift is largely attributable to fisheries and fisheriesrelated economic development and associated immigration. The fact that there is a "core" Aleut population of the community with a historical continuity to the past also has implications for contemporary fishery management issues. These include the activities of the Unalaska Native Fisherman Association and active local involvement in the regional CDQ program. While neither of these undertakings exclude non-Aleuts, Aleut individuals are disproportionately actively involved (relative to their overall representation in the community population). During field interviews for this project, a number of individuals, including local governmental officials and individuals from various private sector enterprises, commented that it appeared to them that there were less people overall in the community in the 2000-2001 period than in the recent past, although there are no hard data available to verify this. Speculation included that with the apparent slow-down in the local support service economy with the AFA-related cessation of the race for fish within the pollock fishery, there has been some population loss among the permanent population, but again, there is no quantitative information available to check this speculation. Anecdotal evidence cited by interviewees include less participation in city-sponsored recreational sports (e.g., the basketball league has seen a drop in the number of teams), and an easing of the shortage of housing (discussed below). ## Age and Sex In the recent past, and particularly with the population growth seen in association with the development of the commercial fishing industry, Unalaska's population has had more men than women. Historically, this has been attributed to the importance of the fishing industry in bringing in transient laborers, most of whom were young males. Table 1.1-4 portrays the changes in proportion of males and females in the population for the years 1970, 1980, and 1990 (2000 census data for this variable are not yet available). Table 1.1-4. Population Composition: Age and Sex Unalaska; 1970, 1980, and 1990 | | 19 | 1970 | | 980 | 1990 | | | |------------|------|------------|-------|------------|-------|------------|--| | | N | % | N | % | N | % | | | Male | 98 | 55% | 858 | 65% | 2,194 | 71% | | | Female | 80 | 45% | 464 | 35% | 895 | 29% | | | Total | 178 | 100% | 1,322 | 100% | 3,089 | 100% | | | Median Age | 26.3 | 26.3 years | | 26.8 years | | 30.3 years | | Census data from the period 1970-1990 showed a climb in median age from 26.3 years to 30.3 years. This is commonly attributed to the relative size of the workforce in comparison to resident families. That is, there is quite a large proportion of adult residents included in the census counts who are not raising children in the community, thereby raising the median age. On the other hand, what the median age information does not portray is that older age bracket residents (i.e., those individuals typically past their 'working years') tend to be under-represented in Unalaska compared to the general population, as few non-lifetime residents of the community chose to stay in Unalaska in their retirement years. School district enrollment figures are presented in Table 1.1-5. This is another indicator of the changing nature of Unalaska's population over the time period portrayed. One can see in the enrollment figures, for example, the enrollment decline that followed the economic decline of the fishing industry in the early 1980s, following the crash of locally important King crab stocks. Enrollments have increased from the late 1980s onward, reflecting two trends, according to school staff. One is the overall growth of the community, and the other is the increase in the number of people who are making Unalaska home for their families. As shown, however, the growth has leveled off recently. The City is in the process of expanding the school, but the issue of whether or not to proceed with the expansion during a time of overall population decline and a leveling off of student population in particular was the subject of debate and a highly contested ballot measure in the community, with the decision to proceed with the expansion passing by a handful of votes. Table 1.1-5. Unalaska City School District Enrollment, Fiscal Years 1978-2001 | Fiscal Year | School Enrollment | |-------------|-------------------| | FY 78 | 133 | | FY 79 | 140 | | FY 80 | 200 | | FY 81 | 186 | | FY 82 | 191 | | FY 83 | 151 | | FY 84 | 140 | | FY 85 | 140 | | FY 86 | 137 | | FY 87 | 159 | | FY 88 | 159 | | FY 89 | 159 | | FY 90 | 225 | | FY 91 | 256 | | FY 92 | 290 | | FY 93 | 330 | | FY 94 | 359 | | FY 95 | 356 | | FY 96 | 353 | | FY 97 | 373 | | FY 98 | 380 | | FY 99 | 353 | | FY 00 | 352 | | FY 01 | 352 | Source: Unalaska City School, 2001 The link between the fisheries and school population can in part be seen through a categorization of the employment, by sector, of parents of Unalaska school children as ascertained by the Unalaska School District as of January, 2000 and shown in Table 1.1-6. As shown, the largest single
sector was government/public, but fish processing and fishing support accounted for 36 percent of the total. According to school staff, the assignment of individual employers/entities to these categories (especially the "fishing support" category) is inexact, but they do give an indication of the relative strength of ties of the different sectors to the school population. One trend that senior staff did note during interviews was an increase in students for whom English is a second language. According to senior school staff, 47 percent of the 2000-2001 kindergarten class were ESL (English as a second language) students. Also, according to school staff the Unalaska City School District was recently named in a poll as one of the top 100 school districts in the country, and placed first in the state in exit exam scores, which has spurred an increase in enrollment of students from smaller villages in the region. For the most part, these are individuals who have chosen to stay with relatives in Unalaska to take advantage of the local educational opportunities, but there is now more opportunity for families to relocate to Unalaska from other regional communities with easing of the local housing shortage. Table 1.1-6. Parent Employment by Sector, Unalaska City School District Fiscal Year 2000 | Parent Employment Sector | Percentage | |----------------------------|------------| | Government/Public | 28% | | Fish Processing | 18% | | Fishing Support | 18% | | Retail/Restaurant/Services | 17% | | Transportation/Freight | 16% | | Self Employed/Unemployed | 3% | | Total | 100% | Source: Unalaska City School District, 2001 ## Housing Types and Population Segments Household types in Unalaska vary by population segment, although this has changed in recent years. In the early 1990s, it was a truism that virtually all permanent residents lived in single-family dwellings, whereas short-term workers lived in group housing at work sites. This pattern has changed somewhat over the years with the construction of a number of multi-unit complexes not associated with particular employers. It is still the case, however, that processing workers for the seafood plants tend to live in housing at the worksite and longer-term workers at the shoreplants tend to live in company housing adjacent to worksites. One seafood processor, however, owns multi-family dwellings in what is otherwise primarily a single-family residential area, so its workforce tends to be differently distributed geographically than other workforces. Some residents of the community have drawn the distinction, with respect to processing firms, that one is not 'fully' a resident of the community unless one has a private residence in the community (i.e., that the 'test' of 'real' residency is tied to whether or not one lives in company-provided housing). This distinction breaks down, however, when one examines the issue on a detailed level, as a number of companies (and not just seafood firms) provide or subsidize housing for employees in Unalaska both adjacent to and separate from their worksite locations; also, the persons living in such residences may, in fact, stay in the community for considerable lengths of time (outstaying many in 'private' residences) and become centrally involved in community life. The housing market has also changed during the period 1998-2001. Through the mid-1980s and the 1990s, housing was at a premium in the community, with virtually zero vacancy rates and waiting lists for rental opportunities. According to city staff, as of 2000, housing and rental prices had not appreciably dropped, but demand has slackened considerably such that there are no longer waiting lists maintained by some of the larger housing owners. According to the city appraiser and planning staff, home sales are slower than in the past, and there is some concern about declines in value, but those concerns have not been realized yet. This was still the case during 2001 fieldwork. Also according to the City, although rental demand is off, rents have not yet begun to drop in response to decrease in demand. This "softening" of the housing market is directly attributed by most to recent changes in the local fishery, including the slowing of the "race for fish" in the pollock fishery that was made possible by the AFA and the formation of co-ops, among other fishery related factors. The most recent housing market survey conducted by the City (November, 2000) noted that there has been "some curiosity expressed" about how 31 new units in the community will effect the rental market. These units include 16 apartments and 15 single-family dwellings for low-income residents (with the single-family dwellings further restricted to Alaska Native/Native American residents). Until very recently, the impact of the addition of new units to the community housing stock on rental rates would not have arisen as an issue. This same survey found that "while only one participant [in the survey] acknowledged lowering rental rates, several of the others acknowledged changing some of their rental policies, e.g., no last month deposit or renting to the general public if units are not required for employees." According to interview data, some landlords are now including fuel or utilities costs in the rental price, with the owner of the largest stock in the community including utilities. The housing survey also found that the upper range for housing costs had decreased slightly between 1997 and 2000 for apartments, whereas the costs for single-family dwellings increased slightly over this same period. Another recent change in housing mentioned in interviews is that companies (other than the major seafood processors) are less likely to supply housing for workers than was the case in the past. This is reportedly due to their being more housing available on the market now, such that companies do not feel forced to tie up housing units for the entire year to be able to meet employee housing needs during peak demand periods. While there are no systematic data available to document this common assertion, the City of Unalaska has discontinued the practice of holding long-term housing leases, which until very recently was a common practice due to the local housing shortage. According to City staff, as of early 2001, the City retained just one lease for housing, and this was on a month-to-month basis. As of fieldwork in early 2001, there were rental vacancies in the community. One long term resident noted that the local access television channel now commonly runs postings for rental opportunities whereas in the recent past virtually all rental opportunities were communicated by word of mouth and openings never had a chance to hit the open market. #### **Links to the Groundfish Fishery** In the late 1970s and early 1980s the community prospered significantly from the King crab fishery. The crab boom resulted in a dramatic increase in both fishing boats and processors in town. In the mid-seventies there were from 90 to 100 commercial vessels regularly fishing the Bering Sea. By 1979 the number had jumped to between 250 and 280, an increase so dramatic that it was difficult for skippers to find crew members. The King crab fishery subsequently declined precipitously and fishermen and processors alike have had to diversify their businesses in order to survive. One of the avenues of diversification was the pollock fishery, and this fishery has provided an economic mainstay for the community in subsequent years. Table 1.1-7 shows the volume and value of fish landed at Unalaska over the period 1977-1999. This span encompasses the high year of the King crab fishery, and shows the decline of the fishery thereafter, and the growth of the pollock fishery. Average value per pound is an artificial figure in that it combines a number of different variables, but it is useful for an overall look at how volume and value have varied over the years (particularly as pollock, a relatively high volume, low value per unit species grew in importance as a component of the community processing base). As shown, Unalaska has ranked as the number one U.S. port in value of landings since 1988 and in volume of landings since 1992.² ² If ports in U.S. territories are included, Unalaska/Dutch Harbor ranks second behind Pago Pago in American Samoa. As the center of the U.S. flag tuna fishery, value of landings at that port in 1998 (approximately \$232 million) more than doubled Unalaska/Dutch Harbor's total for that same year, the last full year for which data are available (NMFS, 2001). Table 1.1-7. Volume and Value of Fish Landed at Unalaska, 1977-1999 | | Volu | me | Valu | | | |------|----------------------|------------|-----------------------|------------|-----------------------| | Year | (millions of pounds) | US Ranking | (millions of dollars) | US Ranking | Average Value (\$/lb) | | 1977 | 100.5 | - | 61.4 | - | 0.61 | | 1978 | 125.8 | - | 99.7 | - | 0.79 | | 1979 | 136.8 | - | 92.7 | - | 0.68 | | 1980 | 136.5 | 3 | 91.3 | 10 | 0.67 | | 1981 | 73.0 | 5 | 57.6 | 11 | 0.79 | | 1982 | 47.0 | 6 | 47.8 | 14 | 1.02 | | 1983 | 48.9 | 9 | 36.4 | 15 | 0.74 | | 1984 | 46.9 | 20 | 20.3 | 13 | 0.43 | | 1985 | 106.3 | 18 | 21.3 | 8 | 0.20 | | 1986 | 88.3 | 9 | 37.2 | 10 | 0.42 | | 1987 | 128.2 | 4 | 62.7 | 8 | 0.49 | | 1988 | 337.3 | 3 | 100.9 | 1 | 0.30 | | 1989 | 504.3 | 2 | 107.4 | 1 | 0.21 | | 1990 | 509.9 | 2 | 126.2 | 1 | 0.25 | | 1991 | 731.7 | 2 | 130.6 | 1 | 0.18 | | 1992 | 736.0 | 1 | 194.0 | 1 | 0.26 | | 1993 | 793.9 | 1 | 161.2 | 1 | 0.20 | | 1994 | 699.6 | 1 | 224.1 | 1 | 0.32 | | 1995 | 684.6 | 1 | 146.2 | 1 | 0.21 | | 1996 | 579.0 | 1 | 118.7 | 1 | 0.20 | | 1997 | 587.8 | 1 | 122.6 | 1 | 0.21 | | 1998 | 597.1 | 1 | 110.0 | 1 | 0.18 | | 1999 | 678.3 | 1 | 140.8 | 1 | 0.21 | Source: 1980-1996 data from National Marine Fisheries Service data cited in City of Unalaska FY 97 Annual Report (December, 1997). 1977-1979 data from NMFS data as cited
in IAI 1991a. 1997-2000 data from NMFS website. Average value derived from volume and value data. Tables 1.1-8 through 1.1-11 provide detailed break-out of processed weight and value of processed fish by species group by year for Unalaska. Given that these data are from a different source as the data in Table 1.1-7, the totals do not match, but the intent of tables is to give a sense of overall effort and value of commercial fish landed in the community and changes through time. Table 1.1-8 provides information on total processed weight by species group by year for 1993-2000, and Table 1.1-9 provides the same information by percentage for each year. Important information for recent years to note is the overall dominance of pollock and the second tier domination of other groundfish and crab in landing volumes. Second, the precipitous decline in crab landings from 1998 (easily the highest volume year over the 1993-2000 span) to 1999 (still the second highest year over this period) to 2000 (far and away the lowest volume year of this period) is readily apparent. Pollock landings, on the other hand, increased from 1998 to 1999, and then again in 2000, reaching its highest level for the 1993-2000 in 2000. Clearly, the recent increase in pollock landings in the community is related to AFA reallocation of quota to onshore processing entities (which increased the inshore component from 35 percent to 50 percent of the BSAI pollock TAC³) as well as increases in the overall TAC itself. Table 1.1-8. Total Processed Weight Contributed by Various Species Groups, by Year Unalaska/Dutch Harbor | Species | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | |-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | Salmon | 9,815,693 | 8,219,894 | 9,760,479 | 8,492,280 | 5,102,131 | 10,040,698 | 14,451,050 | 5,419,183 | | Halibut | 3,530,379 | 2,738,901 | 3,048,416 | 1,792,292 | 4,244,464 | 2,549,776 | 5,152,770 | See Note | | Crab | 57,026,545 | 34,058,757 | 28,391,316 | 28,436,954 | 39,828,000 | 80,217,780 | 56,606,628 | 15,507,892 | | Herring | 2,475,156 | 6,504,076 | 5,620,267 | 6,333,310 | 1,725,481 | 1,489,656 | 1,964,630 | 1,386,097 | | Other
Non-GF | 448,085 | 605,852 | 126,844 | 812,487 | 700 | 1,950 | 0 | 0 | | Pollock | 662,921,232 | 680,883,305 | 643,364,726 | 541,758,182 | 523,462,456 | 531,184,102 | 612,370,740 | 693,429,290 | | Other GF | 29,128,471 | 80,987,733 | 105,701,161 | 102,457,948 | 109,325,165 | 47,665,233 | 42,787,186 | 61,501,748 | | Total | 765.345.561 | 813.998.518 | 796.013.209 | 690.083.453 | 683.688.397 | 673.149.195 | 733.333.004 | 777.244.210 | Note: Halibut is missing from the 2000 database Source: Fish Ticket Data supplied by NPFMC staff Table 1.1-9. Percentage of Total Processed Weight Contributed by Various Species Groups, by Year, Unalaska/Dutch Harbor | Species | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | |--------------|------|------|------|------|------|------|------|----------| | Salmon | 1% | 1% | 1% | 1% | 1% | 1% | 2% | 1% | | Halibut | 0% | 0% | 0% | 0% | 1% | 0% | 1% | See Note | | Crab | 7% | 4% | 4% | 4% | 6% | 12% | 8% | 2% | | Herring | 0% | 1% | 1% | 1% | 0% | 0% | 0% | 0% | | Other Non-GF | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | | Pollock | 87% | 84% | 81% | 79% | 77% | 79% | 84% | 89% | | Other GF | 4% | 10% | 13% | 15% | 16% | 7% | 6% | 8% | | Total | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | Note: Halibut is missing from the 2000 database Source: Fish Ticket Data supplied by NPFMC staff Table 1.1-10 presents information on the value of processed fish by species group by year for the period 1993-2000 for Unalaska. Table 1.1-11 provides the same information on a percentage basis. As shown, from 1993-1999, pollock fluctuated between 31 percent and 41 percent of total commercial fish value, and then jumped to 57 percent of the total in 2000. This sharp increase is due in large part to what happened to local ³ Inshore/Offshore-3, passed by the NPFMC in 1998, was scheduled to take the inshore component from 35 percent to 39 percent of the BSAI pollock TAC by reallocating 4 percent away from the offshore sector (and leaving the CDQ preallocation set aside at 7.5 percent). This planned shift never took place, however, as it was superceded later that same year (before implementation) by AFA. AFA allocated 50 percent of the TAC to onshore sector, 40 percent to the offshore catcher processor sector, and 10 percent to newly created the mothership sector (which had previously been a part of the offshore sector along with catcher processors). AFA also increased CDQ set aside to 10 percent of the TAC. crab value in 2000, going from \$86 million to \$43 million in processed value between 1999 and 2000 (and halibut not appearing in the data also accounts for at least a small portion of the jump). Crab declined from 51 percent of value in 1999 to 31 percent of value in 2000 (and this decrease will be greater when the halibut data are added). Pollock is easily at its highest point of total value (\$80 million) of the 1993-2000 span during 2000; crab at \$43 million is at its lowest point of the span in that same year. During the period 1993-2000, crab value was higher than pollock value except for 1997 (when the value of pollock surpassed crab by approximately \$4 million) and 2000 (when the value of pollock was approximately \$37 million greater than crab). As can be seen, the increase in value of landings in the community resulting from AFA related pollock landings increases were more than offset by the decline in crab landings in 2000. Table 1.1-10. Value of Processed Fish by Species Group and Year for Unalaska/Dutch Harbor, 1993-2000 | Species | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | |-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | Salmon | 6,615,324 | 7,877,088 | 7,598,230 | 6,657,590 | 3,108,353 | 4,083,910 | 6,344,180 | 3,428,065 | | Halibut | 4,497,715 | 5,271,277 | 5,714,417 | 3,528,928 | 8,561,085 | 2,307,552 | 9,320,086 | See Note | | Crab | 73,104,099 | 69,363,848 | 69,248,632 | 55,334,010 | 49,420,889 | 64,092,959 | 85,615,553 | 42,908,899 | | Herring | 371,273 | 754,995 | 1,188,539 | 2,111,846 | 329,564 | 311,338 | 479,371 | 235,637 | | Other
Non-GF | 744,782 | 459,663 | 39,239 | 244,984 | 4,885 | 421 | 0 | 0 | | Pollock | 45,788,471 | 52,089,951 | 62,896,575 | 43,283,714 | 53,181,109 | 36,032,380 | 55,806,016 | 79,742,642 | | Other GF | 5,570,305 | 11,554,074 | 20,320,242 | 17,428,653 | 15,569,770 | 8,194,740 | 10,715,151 | 12,545,008 | | Total | 136,691,969 | 147,370,896 | 167,005,874 | 128,589,725 | 130,175,655 | 115,023,300 | 168,280,357 | 138,860,251 | Note: Halibut is missing from the 2000 database Source: Fish Ticket Data supplied by NPFMC staff Table 1.1-11. Percentage of Total Processed Value Contributed by Various Species Groups, by Year, Unalaska/Dutch Harbor | Species | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | |--------------|------|------|------|------|------|------|------|----------| | Salmon | 5% | 5% | 5% | 5% | 2% | 4% | 4% | 2% | | Halibut | 3% | 4% | 3% | 3% | 7% | 2% | 6% | See Note | | Crab | 53% | 47% | 41% | 43% | 38% | 56% | 51% | 31% | | Herring | 0% | 1% | 1% | 2% | 0% | 0% | 0% | 0% | | Other Non-GF | 1% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | | Pollock | 33% | 35% | 38% | 34% | 41% | 31% | 33% | 57% | | Other GF | 4% | 8% | 12% | 14% | 12% | 7% | 6% | 9% | | Total | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | Note: Halibut is missing from the 2000 database Source: Fish Ticket Data supplied by NPFMC staff The commercial fishery provides very large component of the employment base in Unalaska. According to the City of Unalaska Comprehensive Annual Financial Report for the fiscal year ending June 30, 2000, "The Unalaska economy is driven by the seafood industry. About half of the Unalaska labor force is employed by the seafood industry, and 90 percent of the workers consider themselves dependent on the seafood industry." In a telephone survey conducted by the City an included in that same report, the top four employers in the community are seafood industry businesses (Table 1.1-12). The City is the fifth largest employer, and the next two are shipping firms that rely virtually exclusively on the seafood industry. These firms are followed by the school district, which is followed by a fuel and vessel supply firm that relies very heavily on the fishing industry. It is only at the number 10 position on the list that one comes to an employer that is not a seafood company, a direct/exclusive support firm for commercial fishing sector firms, or a government entity. Table 1.1-12. City of Unalaska, Ten Principal Employers, June 30, 2000. | Employer | Type of Business | |--------------------------------|-----------------------------------| | Unisea, Inc. | Seafood, Hotel | | Westward Seafoods, Inc. | Seafood | | Alyeska Seafood, Inc. | Seafood | | Royal Aleutian Seafoods, Inc. | Seafood | | City of Unalaska | Local Government, Utilities, Port | | Sealand Services, Inc. | Transportation | | American President Lines, Ltd. | Transportation | | Unalaska City School | Primary, Secondary Education | | Western Pioneer, Inc. | Fuel, Vessel Support | | Alaska Commercial Company | Grocery, Retail | Source: City of Unalaska The following discussion of the fishing industry is divided into the harvesting and processing sectors, as each has significance for the Unalaska economy and community. A third section provides information on fishing industry support services. ## Harvesting The catcher vessel sector description of the Inshore/Offshore-3 document (NPFMC 1998) as well as the sector profile discussion in this document details patterns of geographic distribution of vessels and vessel operations. As noted in those discussions, one of
the trends in recent years has been the dramatic increase in ownership and/or control (through third party entities with some type of business relationship to the processors) of harvest vessels by the shoreplants in Unalaska. Prior to this pattern of acquisition, it was accurate to say that no permanent residents of Unalaska were involved in the pollock fishery as vessel owners, nor were any vessels 'home ported' out of Unalaska in the sense of being the community of residence for the skipper and crew. With the changes in ownership patterns have come complexities for the description of the relationship of the harvest fleet to the community. While it is still true to say that no independent fishermen who are permanent residents of the community own pollock harvesting vessels, some pollock harvesting vessels are now owned (partially or wholly) by economic entities based in the community (or, given the complex nature of corporate relationships and/or restrictions on foreign ownership of the fleet, by entities with close relationships with entities based in the community). This change in ownership pattern, while it may have shifted where vessels are home ported or, perhaps more importantly from an economic perspective, spend more of the year, it is still the case that very few, if any, permanent residents of the community work on pollock harvesting vessels. With the AFA, there have been some recent changes in ownership of catcher vessels, and the details of this shift are analyzed the Council's AFA Report to Congress (NPFMC 2001). There have been examples in Unalaska of a vessel being purchased by other vessels within a co-op and the redistribution of the purchased vessel's quota share being distributed among other vessels in the co-op, and of vessels changing ownership and moving between co-ops that are based in different communities. Further, quota has been rented to other co-op members as well. None of these changes involved local residents, and none of the shifts of quota resulting from these actions are considered of a magnitude to have created community level impacts. There are also indications that there are fundamental changes in relations between vessel crew and owners with the conversion of one or more vessel crew compensation structures from a share to a wage basis on vessels controlled by processing entities. This is perhaps consistent with an assigned quota system where vessel revenues are more-or-less predictable. Crew share systems are, of course, well suited for a fishing environment where the crew shares in the economic risk and benefits in the rewards of uncertain outcomes, but with what is essentially corporate ownership of a stable quota share, there are those who feel that results can be obtained from vessels without needed to utilize an share incentive system. This is consistent with the observation of one locally based skipper that with the AFA co-op quota assignment system, operating a vessel has become more like "running a combine" than hunting, as "everything is in fences now." Different AFA processors in Unalaska have very different vessel ownership/control patterns, with one processor having virtually no ownership interest (having decreased from a minor ownership share previously) while others have quite strong interests. While these specific changes may or may not be AFA influenced in their timing, clearly the trends of processor control of catch capacity leading to these logical consequences were operating in the pre-AFA environment. Further, there has been considerable speculation related to the differential economics of various price points when it comes to what plants pay for fish, given different catcher vessel ownership relations. Where plants control a large portion of the delivery fleet (and can thus decide where to take their profits in that transaction), the price paid to non-directly controlled vessels becomes a marginal cost, with different rules about what makes economic sense in comparison to a fleet not controlled by a processor. While there were numerous opinions about the logical outcome of these circumstances under an AFA driven management regime, clearly these potential changes have not yet fully played themselves out in the relatively brief time since the implementation of onshore co-ops in Unalaska. According to interviews conducted for an AFA social impact assessment in 2001, while there has been leasing of quota between vessels that resulted in greater overall economic efficiency, there have been some cases where there has been a reluctance of vessel owners to trade the resource due to concerns or lack of trust in what NMFS or NPFMC may do in the long run. That is, despite incentives to lease quota, some owners are still protective of maintaining an ongoing history of direct participation in the pollock fishery as a hedge against possible future changes in fishery management. Another change among catcher vessels participating in co-ops is the level of information sharing between vessels, such that vessels can coordinate catch timing and location so as to be able to optimize timing at the processing plant. In some ways, the co-ops have resulted in "absolute flexibility" from the perspective of coordination and running a processing plant. From the perspective of the catcher vessel owner, although most agree wholeheartedly that co-ops are a better management system that complete open access, the current system in some ways represents a loss of flexibility in terms of the strength of ties to a particular processor. Of course, the change with co-ops is to some degree more apparent than real, given the existing ownership/control patterns of a good proportion of the fleet and the limited number of delivery options available to vessels without a commitment to any particular plant. Yet another change in the 1999-2001 era is the differential importance of small harvest vessels for some operations in the face Steller sea lion related harvest area restrictions. Catch and delivery by co-op member vessels that are small enough to fish inside areas closed to the larger vessel classes can be coordinated to optimize the overall delivery schedule. This has been recognized as an important strategic approach by at least one processor to date, but clearly the utility of such an approach is enhanced or limited by the scale of the individual processing operation. Another type of relationship change between catcher vessels and shore processors in Unalaska resulting from the implementation of co-ops is the degree of management coordination between the vessel co-op and the plant, as realized in the creation of co-op manager positions. These individuals represent the co-op in dealing with plant management and are privy to a level of detail about plant operations and economics that simply was not communicated to the catcher fleet prior to the formation of co-ops. In terms of the role of the community of Unalaska in relation to the overall pollock harvest in the Bering Sea, Table 1.1-13 shows the relative distribution of Bering Sea pollock catch between sectors in the initial allocation for 2000. Table 1.1-14 displays information on the links between the inshore allocation and specific communities as measured by base of operations for the individual cooperatives. This, of course, is not an exact measure because there is the flexibility of delivering some catch outside the cooperative, the ability of open access quota to be delivered anywhere, and the fact that some entities have locations in more than one community, among other factors. These factors show, in at least rough terms, the relative importance of Unalaska as a base of operations for the Bering Sea inshore pollock catcher vessel activity as well as for the shore processing sector. As shown, over half of the inshore pollock co-op allocations are associated with Unalaska based entities. This likely understates the relative percentage of Unalaska as a support community for CV operations, as some logistical and other support activity for Akutan and Beaver Inlet operations takes place in Unalaska as well. Table 1.1-13. Initial Bering Sea Pollock Allocations, 2000 | Quota/Allocation | Percent of TAC | Metric Tons | | | |-------------------------|----------------|-------------|--|--| | TAC | 100% | 1,139,000 | | | | CDQ | 10% | 113,900 | | | | Incidental Catch Amount | 5% | 51,255 | | | | Offshore | 40%* | 389,538 | | | | Mothership | 10%* | 97,385 | | | | Inshore | 50%* | 486,923 | | | ^{*} Amounts calculated from remaining TAC after deductions for CDQ and Incidental Catch Amounts. Table 1.1-14. Allocations to Inshore Cooperatives by Community Base of Operations, 2000 | Cooperative | Percentage of
Inshore Allocation | |---|-------------------------------------| | Unalaska Based | | | Unisea Fleet Cooperative | 24.087% | | Westward Fleet Cooperative | 16.824% | | Unalaska Fleet Cooperative | 11.655% | | Subtotal, Unalaska Based Cooperatives | 52.566% | | Other Communities | | | Akutan Catcher Vessel Association | 28.257% | | Arctic Enterprise Association (currently operating in Akutan) | 5.466% | | Northern Victor Fleet Cooperative (currently operating in Beaver Inlet [outside of organized borough boundaries]) | 6.837% | | Peter Pan Cooperative (King Cove) | 0.720% | | Subtotal, Other Communities | 41.280% | | Non-Location Specific | | | Open Access | 6.154% | Source: Based on data from 2000 Final Report of Unalaska Fleet Cooperative to the NPFMC (Ettefagh, 2001) While there is no direct participation in the pollock fishery by vessels owned or crewed by local residents, there is a local commercial catcher vessel fleet that interacts to some degree with the larger as well as the smaller processors. A portion of the fleet is represented by the Unalaska Native Fisherman Association, and according to interview data, in 1998
there are 24 boats in the association, ranging in size from 18 foot skiffs up to a 68 foot commercial vessel. This association is open to Natives and non-Natives alike, but there is a requirement that members must live in the community eight months per year. Local vessels do not participate in the pollock fishery, but do participate in the local halibut, crab, and cod fisheries on a small scale. A frequently noted problem in developing markets and long-term relationships with the larger processing entities, however, is that the locally based fleet are small vessels by Bering Sea standards. In practical terms this means that they are more weather dependent than larger vessels and have a smaller delivery capacity per trip, which makes it difficult for larger plants to accommodate what are by necessity small and sporadic deliveries. Unalaska did not qualify as a CDQ community, but it is an ex-officio member of the Aleutian Pribilof Island Community Development Association (APICDA). This CDQ group is partners with both an onshore and offshore entity, and offers training programs in Unalaska. Though Unalaska is not formally a CDQ community, according to interview data it is in fact where more of APICDA training and other programs are run because of the size of the population it services in the community. Although theoretically the recent increase in CDQ quota under AFA hurt the community as a non-CDQ participant, the simultaneously occurring increase in onshore quota, again in theory, more than made up the difference. The precise impacts of this shift on the community are not possible to ascertain with available data, but it is known that given CDQ partnerships with onshore and offshore sector participants that directly or indirectly benefit the community through either local economic activity or payment of taxes in one form or another, the consequences of the change are likely to be minor indeed. When queried about the impact of CDQ allocation change, a number of respondents offered the opinion that it was simply a "cost of doing business." ## **Processing** The shoreplant operations themselves, and the range of variation of operations in the community, have been summarized in earlier documents (most recently in the Inshore/Offshore-3 SIA) and are described in the Sector Profile section of this document, and are not recapitulated here. Rather, this section focuses on recent changes in the sector and its relationship to the community. In terms of links to the community, it is important to note that shoreplants have long been a part of the community. That is not to say that relationships between the plants and the community itself have been without strain at times over the years, but Unalaska is perhaps unique with respect to the AKAPAI communities included in this analysis for the degree of articulation of the plants with the local community. A number of the longer-term residents working at the plants, especially management level personnel, are actively involved in the community and serve in various elected, appointed, and volunteer capacities with the City of Unalaska and numerous community organizations. Paradoxically, it has been the case in Unalaska that length of local residency of the workforce employed in seafood processing is inversely related to the vitality of the local industry in general. When the workforce was largest, there were virtually no local hires, particularly of long-term residents. For example, in 1982, at the height of processing capacity for King crab, there were no individuals identified as local residents working in the processing plants. There were a number of reasons cited for that fact at the time, including working conditions, pay rate, and work hours at the seafood plants that were attractive only to temporary transient workers. At that time, workers were hired out of the Pacific Northwest, typically Seattle, and were flown to Unalaska to work on a six-month contract basis. With the downturn in the crab fisheries, companies are no longer able to afford the expenses of a six-month contract system. Some have done away with such contracts and hire workers for an indefinite period of time with incentives for longevity; others hire more out of the Alaska labor pool than in the past. Several other factors influencing local hires in periods of fluctuation should be noted. First, under "boom" conditions there is a range of available employment options for local residents outside of the less appealing processing jobs. Second, when there is a downturn in hires at the local processing plants, virtually all of the workforce at the individual plants consists of returning workers, obviating the need for new hires. Even when six-month contracts were most common, there was always a core of returning workers. Third, setting the lack of long-term resident hires aside, Unalaska is seldom the "point of hire" for processing workers for individuals who are newly arrived to the community. That is to say, people do not come to Unalaska for processing work unless they have already secured a position. It is far too expensive to fly out to the community on the off chance they might gain employment, particularly at relatively low-paying jobs, especially given the fact that there is seldom housing available in the community and that which does come available is relatively expensive. Fourth, it should be noted that a lack of local hire does not apply to all positions with the seafood companies. Management positions at nearly all of the seafood companies (as well as with the major fisheries support sector companies) are occupied by individuals who, if not originally from the community, are at least long-time residents of the community or the region. In a number of ways, the processing industry is a "small circle" in terms of managers, and individuals who have worked for more than one company and have gained ten to twenty years experience in the community and the region are not uncommon. Individual owners and, in the case of "permanently" moored floating processors, even the plants themselves may come and go, but individuals in upper level management positions tend to remain in the business and in the area. Very few, if any, lifetime residents of the community work at the shoreplants at any one time. There are a number of reasons commonly cited for this, but the most common dynamic involves the high cost of living in the community. Costs are such that it is nearly impossible for a local resident to take an entry-level job at one of the plants, and better paying jobs at the plant are typically filled by individuals who have 'worked their way up' within the company. Further, according to interview data, local residents who have tried working at the plants have found that entry-level position work schedules are not typically compatible with an active involvement in community and family life outside of the plant. Interviews with processing plant personnel suggest that a major operational impact experienced by the community of Unalaska since the passage of AFA and the formation of the co-op system has been the slowing down of spreading out of pollock processing activity. While some plants reported minor changes in numbers of personnel associated with pollock processing operations, for the most part levels have stayed almost the same, given the need for a full complement of staff to run the plants. What has changed is that, according to senior plant personnel, workers are working less hours per day and working for longer periods than was the case at the end of the open access era. Workers are reportedly earning perhaps slightly more than in past seasons, but it is taking them longer to do so, given the shorter workdays. This has had some impact on recruiting personnel, as there are some processing workers who want to come to the community for a relatively brief period of time and maximize the number of hours worked during the time they are in the community so that they can return to their home communities with more money in a shorter period of time. Plant personnel also note that recruiting for processing workers has been more difficult during the time that there is a strong economy in the Lower 48. Plant personnel also note that despite co-op formation, there is still a "race" interval during pollock processing in the roe season. Roe is at optimal quality for only a relatively short period, so there is a premium placed on maximizing return within that relatively short window. Further, non-roe pollock are also harvested to target maximum returns based on quality of fish, but those windows are much larger than the roe window One change within shoreplants as a result of co-op/AFA related conditions has been the addition of additional pollock products to the processing mix. During open access when highest throughput was the goal, the returns on a number of specialty products were not worth the time (and opportunity costs) that such production would take. Some plants that concentrated heavily on surimi are now producing pollock fillets. Fillets are more labor intensive to produce than surimi, so theoretically would result in more employment at the plants, but in practice plant operations typically split their labor forces between a "surimi side" and a "seafood side" of operations. Producing pollock fillets means a diversion of some pollock to the "seafood side" of the operation and this has happened at the same time that the seafood side of local operations has been in decline with the shrinking of crab quotas. At least two of the major AFA plants have reported that they are not using dedicated crews for crab processing because of the sharp decline in volume in this past year, such that pollock seafood side products have picked up some of the slack, with workers switching to processing other species as they become available. In general, it is the case at all plants that "less pollock is going to fish meal" as other
products are being developed and recovery rates for existing products are increased given the ability to optimize for return per unit rather than return based on volume. With the slowing of the pace of processing, at least one shoreside operation has closed a relatively inefficient but significant portion of their plant in favor of maximizing use of other portions of the plant. One operation reports more workers on site than in the recent past, but another reports labor force is down somewhat from the peak years when the crab quota was larger. The combination of balancing seafood with surimi production, and adding fillet and other product capacity makes comparing workforces between circumstances like 'comparing apples and oranges' in the words of one plant manager. There have been disruptions to plant operations associated with recently imposed Steller sea lion protection measures. According to senior staff at the local pollock plants, there were times during the C/D season of 2000 when the individual plants ran out of fish during what would otherwise have been continuous operation periods. When plants shut down during production, there are disproportionate inefficiencies created not just by the downtime, but by required cleaning as well. Plant managers were of a common opinion that the 2000 A/B seasons were a marked success under initial co-op and AFA quota allocation conditions, but that in the C/D season, the Steller sea lion protection measures "took away" at least some of the gains realized under the new management system. On the other hand, the opinion was universally held among plant managers that the co-op structure mitigated, at least to a degree, the negative impacts to the Steller sea lion protection measures (i.e., without the co-ops, the negative impacts of the protection measures would have been much worse). In concrete terms, in addition to timing and effort inefficiencies, the sea lion protection measures hurt shoreplants in terms of fish quality and age, something that the co-op system had allowed the plants to make gains on compared to the derby system context pre-AFA. There has been some shift in inshore pollock away from Unalaska Island with the move of the Arctic Enterprise floating processor from Beaver Inlet to Akutan (coincident with its purchase by a new owner), but this shift has not had direct consequences on the community of Unalaska. Local revenues were not effected, as Beaver Inlet is outside of the municipal boundaries of Unalaska, nor is Beaver Inlet part of an organized borough, so there were no local taxes that derived from that operation. The operation was supported logistically out of Unalaska as the closest transportation hub, but that is still the case to some degree even with the vessel operating out of Akutan. #### Support Services Unalaska is unique among Alaska coastal communities in the degree to which it provides support services for the Bering Sea groundfish fishery. As described in detail in the Inshore/Offshore-1 community profile (NPFMC 1991), Unalaska serves as an important port for several different aspects of pollock fishery. Support services include a wide range of companies, including such diverse services as accounting and bookkeeping, banking, construction and engineering, diesel sales and service, electrical and electronics services, freight forwarding, hydraulic services, logistical support, marine pilots/tugs, maritime agencies, net replacement and repair, vessel repair, stevedoring, vehicle rentals, warehousing, and welding, among others. There is no other community in the region with this type of development and capacity to support the various fishery sectors in the Bering Sea. In general, in the way of support services, there is little direct supply of the main shoreplants in the community. This is especially true of the large pollock oriented shoreplants, by far the largest plants in the community. These are large enough entities that it is more efficient to supply most on-site needs directly from outside of the community. These plants all feature an "industrial enclave" style development to some degree, but this varies from operation to operation. Plants may purchase some regular items such as rain gear and boots for processors locally that they do not want to keep in inventory, but major purchases may be limited to fuel sales. Commonly large volume supplies, such as packaging materials and food are purchased "down south" and shipped direct. Individual processing plant workers do patronize local businesses to some extent, but this is limited by the fact that they are supplied furnished housing and meals by the processors. The smaller operations in Unalaska have proportionally more local purchases of goods and services in the community. The major non-pollock crab processor in the community noted that because of the scale of their operation they did buy most services in town, but that with the overall decline in the support service sector of the economy they have seen "about a half dozen" of their vendors leave the community. There are a number of businesses in Unalaska that are oriented toward supporting catcher vessels for a significant amount of their business. With a decrease in the race for fish during the locally important pollock fishery (and the coincident decline of quota in the area crab fishery), there has been a drop-off in peak demand for services. The amount of this drop-off depends on a number of different factors, including the relative reliance on crab and trawl fleet support. According to one service supply business manager who is quite heavily dependent upon trawl vessels, the co-op system in theory should help his business out in the long run, because even if overall there are less vessels with quota reassignments within co-ops, it will be the less efficient vessels that drop out, leaving more predictability and more secure players. In practice, a good portion of the support business in Unalaska has been built on inefficiencies, as according to this manager "this was Unalaska business." Like many of the support service businesses contacted, the common pattern for his business was to have a limited staff of year-round personnel and to ramp up capacity during peak periods by bringing in temporary or seasonal staff from Outside. This is true both for vessel oriented service firms that are parts of larger regional or national entities as well as for more locally based firms (and of the latter there are very few). With the conditions created by AFA (in conjunction with the fall in crab quotas), there have been employment cut backs at all of the businesses contacted in this subsector, either in the form of having fewer year-round personnel or in cutting back on the number of seasonal hires for peak demand, and in all cases a cutting back of overtime hours for staff. One electronics firm contacted is at half the level of employment that was typical in pre-co-op circumstances, and this was not an unusual case. One local business manager captured a common sentiment regarding the cutbacks and the quality of the jobs remaining in the community, however, with the observation that with the cutback "we have been trading money for sanity." In the words of another business owner, during the days of the race for fish "I didn't know I was crisis oriented" and in the time passing since crisis mode he has had to find other ways of making the business work. In this particular case of a locally owned vessel support business, survival has meant diversifying away from relying on the fishing industry nearly exclusively by performing similar services for land-based businesses (and adding new marine-oriented services) and away from relying on Unalaska as a nearly exclusive geographic base of revenue by taking his services to the region and beyond. Another common problem with these businesses is inventory, and this has changed somewhat under co-op conditions (again, depending on how relatively dependent a business is on trawl-specific trade). Under race for fish conditions, carrying a larger than normal relative to overall volume of sales inventory was necessary due to the need to have virtually everything possible on hand instantly in case of need during the fishing season, as downtime for vessels off of the fishing grounds meant unacceptable opportunity losses, and vessels were willing to pay whatever it took to get them back on the grounds as quickly as possible - time was worth more than the cost of urgent repairs. As the race for fish went away, it was much more efficient to be able to order specialty parts expressed shipped in from the Lower 48 (typically Seattle) if needed than to try and stock everything in Unalaska. Depending on the composition of the business base of these firms, they have been hit more or less hard by the decline in the crab quota. According to one business manager, with the loss of income to crab vessels, he has seen his crab vessel support business drop off 50 percent as owners are not spending money on preventative maintenance, and among those who are performing work, they are slower to pay their bills. With the trawl fleet, the slowing down of the race for fish has also meant that the trawlers are spreading their business differently in the community, according to support business owners. Not only is less money being spent overall because of the relative lack of urgency, "now money managers are involved" in looking at relative value between providers and shopping work around. For a number of the support businesses that service the catcher fleet, the loss of a large portion of the catcher processor fleet was a large blow. While these large vessels did not employ the full range of services that some of the smaller catcher vessels might have employed in the community (simply due to their not being facilities able to handle all of the work), they did need specialty service work from a number of the suppliers. Another common
observation of the support sector within the community is that while the relatively longer pollock seasons are good for the community as a whole, a number of entrepreneurial businesses have folded, and the redundancy among (or the range of choices among) service providers has been reduced. The flip side of this means that, according to one fishing business manager, they can be more selective in their purchasing of services and "everything no longer needs to be at a premium price in Dutch Harbor." Fuel sales are another type of locally provided support for the catcher vessel fleet. The Steller sea lion restrictions that went into place in the C/D seasons in 2000 have meant an increase in fuel sales due to longer vessel trips to the open fishing grounds. This, coupled with co-occurring high fuel prices has meant higher costs to the catcher vessel (and the catcher-processor) fleet. While the fuel sales businesses have benefitted (as has the municipality of Unalaska through tax on the fuel sales), the vessels and shoreplants (because of the higher cost of fuel they are purchasing) have been hurt. There is a significant amount of support business in the community that is directly related to the offshore fleet. Catcher processors use warehousing services, and refuel and resupply when they are in the community to do a full or partial offload of product. (During the race for fish days, depending on the pace of the fishing, length of the season, capacity of the vessel, and a number of other variables, catcher processors may make a partial offload during the season [to free up capacity for finishing the season], and then do a full offload in Unalaska at the end of the season, or they may make a full offload during the season.) Additionally, catcher processors typically need a range of expediting, freight management, and logistical support services through Unalaska to keep operating in the Bering Sea. While this basic pattern has not changed in the post-AFA era, the volume of local work is down significantly due to both the reduction in the catcher processor fleet and the slackening of the pace of fishing during the 1999-2001 era. This loss of catcher processor related business has not be evenly distributed throughout the support sector businesses in the community. For example, the OSI facilities in Captain's Bay were disproportionately dependent on the portion of the fleet that was excluded from the fishery compared to most other large businesses in the community. As a result, demand for dockage and warehousing at the facility is down, as are associated sales of other goods and services at the facility. Loss in local support demand can also be gauged by the fact that American Seafoods itself has a much reduced direct presence in the community, going from three year-round and four seasonal employees pre-AFA, to one year-round and two employees each hired for two months under the present circumstances. For the catcher processor business activity that remains in the community, there has also been a shift by one of the main companies away from utilizing private facilities in favor of doing a higher portion of their business across one of the municipal docks. Clearly a rational business decision in the new environment, this has served to move some support income from the private to public sector. Shipping seafood products is also a major business sector in the community. In addition to the two main shipping lines that serve the community, another type of support service provided in the community for both the inshore and offshore fleet is stevedoring services. While some shoreplants typically do not use stevedores in loading operations across their docks, or the demand is lower for stevedoring because of containerized product, hatch gangs are used for loading product 'over the side' to trampers for shipment from Unalaska. Stevedoring jobs are relatively high paying, and much valued in the community, though the work is not steady for the bulk of persons engaged in it. What does make this labor opportunity particularly valued is the fact that long-term locals, including lifetime residents, may qualify for, and provide a viable labor pool for, these positions without having to go through minimum-wage type of entry positions first. There are also union and non-union laborers alike who come to the community during the busy seasons to take advantage of the opportunities available in the community. With the recent changing of the pace and structure of the fishery with co-ops, shipping business patterns have changed in the community. The largest difference is attributed to the fact that processors can now much more closely time their operations and shipping needs, and can thus optimize their range of shipping choices. This opens up a range of options not readily available under race for fish conditions. For example, processing entities can more easily arrange for scheduled transfers direct to trampers rather than having to use always available locally established shipping firms to transfer product. Of course, shipping choices ultimately depend on product mix, destination, and cost efficiencies, but clearly local shipping-related entities have felt impacts directly as a result of fishery structure changes. There are also indications that shoreside plants have shifted to a greater emphasis on tramper shipments relative to containerized shipments, but no quantitative information is available to verify this assertion. One change seen in the community in the post-race for pollock era is the addition of two more private dock/shipping facilities in the community, one at the old East Point plant location and another in Captain's Bay. There would also appear to be proportionately more offshore related volume going across municipal docks than was the case in the past, and city revenue from dockage and wharfage in general is up. These two factors reinforce the general observation that shipping related business is becoming less concentrated among the formerly dominant local entities and more spread out among various entities. In the 1999-2001 era, there has been a reported shift in product destination from Unalaska, with less product going to Asia and more going to domestic and European markets, due primarily to change in product mix. One of the large shipping firms in the community reports that here has been almost a 100 percent fall-off in business to his company from the offshore sector since AFA, and increases from the shoreside have not made up this differential. This is attributed to the fact that without the Olympic system, seafood companies can schedule and plan offloads, meaning that they can make their own arrangements rather than having to go through a shipping company that is always available. Similarly, the onshore sector can more easily schedule tramper loads. The situation is not straightforward, however, for the two primary shipping companies with a local presence in Unalaska. There has been some movement of market share between the two firms that, according to some, were as closely associated with ownership and corporate changes at the two firms as much as any local market forces. According to one firm, union longshoring hours were down approximately 22 percent between 1998 and 2000. The community has seen a higher proportion of work going to non-union longshoremen recently, although the non-union entities tend to have smaller workforces (because, in part, of being able to schedule work rather than needing a large on-call labor pool). Co-op conditions have pushed inventories up because of increased recovery rates and diversification of product mix, meaning that there has been some increase in demand for cold storage, berthing, dockside services, and so on. While one senior shipping manager has reported that movement of product will become more of an issue with this trend, he also reports that there has been a tradeoff with the slowing of the peak periods post-AFA; even during the busy season, now staff are able to work more normal schedules and can be home with their families by 7:00 p.m. There are also support service providers in Unalaska who support inshore processing entities that are operating far outside of the community. For example, the firm (Icicle Seafoods) that owns the floating processor in Beaver Inlet (Northern Victor) has a local Unalaska representative who supports that operation. (When a second floater was operating in Beaver Inlet, this entity had an office in Unalaska that, among other functions, supported that operation.) Similarly, the company that owns and operates the large shoreplant in Akutan (Trident) has a support office in Unalaska because of the logistical support needs of that plant that cannot be managed directly from Akutan. In general, the recent changes experienced by support service sector businesses in Unalaska have gone to the heart of the paradox of the Unalaska support service economy. This portion of the local economy was historically dependent to a large degree of the economic inefficiency of the commercial fishing industry. To the extent that the co-op quota allocation system has made pollock fishing more economically efficient, it has also served to allow vessel and facility owners to not have to purchase inefficient support services. This has meant a drop in local support service activity, employment, and revenue. There are no data available to quantify the amount of the drop, but it has clearly been significant for many of the businesses in this sector. Overall, peak demand is lower, the pace of business is slower, money has become at least as important of a consideration as time, and businesses do not need the level of inventory and staff as in the past. There are, of course, exceptions to this generalization, but the pattern is apparently quite consistent over the sector as a whole. ## The Municipality and Revenues Table 1.1-15 presents a break-down of revenues by source for the
City of Unalaska. This provides a sense of scale for the different revenue sources for the City's General Fund, and specifically for the importance of the local raw fish tax. Table 1.1-15. City of Unalaska General Fund Budget, Fiscal Years 1998-2001 | Revenues | FY98 (actual) | FY99 (actual) | FY00 (actual) | FY01 (budget) | |-----------------------------|---------------|---------------|---------------|---------------| | Real Property Tax | 2,521,746 | 2,698,454 | 2,690,560 | 2,751,000 | | Personal Property Tax | 1,164,363 | 1,120,957 | 1,202,265 | 1,120,000 | | Raw Fish Tax | 2,641,124 | 2,513,500 | 3,410,717 | 2,125,000 | | Sales Tax | 3,533,123 | 3,254,403 | 3,242,284 | 2,850,000 | | Other Taxes | 439,735 | 516,863 | 509,434 | 512,764 | | State of Alaska | 6,030,119 | 6,306,064 | 5,640,942 | 4,511,813 | | Charges for Services | 278,703 | 282,778 | 279,159 | 282,573 | | Permits & Licenses | 19,546 | 13,687 | 22,018 | 20,500 | | Miscellaneous | 2,407,515 | 2,099,082 | 1,954,352 | 975,250 | | Other Financing Sources | 386,895 | 273,416 | 461,817 | 13,874 | | Total General Revenue Funds | 19,422,869 | 19,079,204 | 19,413,548 | 15,162,774 | Source: City of Unalaska Finance Department spreadsheet Table 1.1-16 provides a break-out of selected fisheries-related General Fund revenue sources. These include the local raw fish sales tax and the intergovernmental fisheries business tax and the fisheries resource landing tax. A number of factors influence the volume and value of fish landed in the community which, in turn, translates into taxes paid. (The City of Unalaska does not keep a break-out of revenue generated by species or species group so information is not readily available to calculate the relative revenue contribution of individual species or species groups, but a proxy for that information for the shore based operations may be found in Tables 1.1-9 and 1.1-10.) Actual information for FY 2001 is not yet available (projected budget information is provided in Table 1.1-16). When available, FY 2001 data will capture the second half of the first full (calendar) year of onshore co-ops, and cover the period when the more stringent Steller sea lion protection measures were put in place during 2000. Table 1.1-16. City of Unalaska Selected Fisheries Related General Fund Revenues, Fiscal Years 1991-2001 | | FY91 | FY92 | FY93 | FY94 | FY95 | FY96 | FY97 | FY98 | FY99 | FY00 | FY01P* | |---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Raw Fish
Sales Tax | 2,851,008 | 3,681,908 | 3,131,661 | 2,641,802 | 3,340,512 | 2,212,833 | 2,641,645 | 2,641,124 | 2,513,500 | 3,410,717 | 3,020,000 | | Fisheries
Business
Tax | 2,067,793 | 2,475,197 | 3,581,134 | 2,770,321 | 2,364,847 | 2,828,570 | 2,071,914 | 2,424,747 | 2,424,787 | 2,483,670 | 3,272,813 | | Fisheries
Resource
Landing
Tax | na | na | na | na | na | 2,637,708 | 3,015,804 | 2,604,706 | 2,739,821 | 2,224,903 | 2,786,202 | | Three
Source
Total | 4,918,801 | 6,157,105 | 6,712,795 | 5,412,123 | 5,705,359 | 7,679,111 | 7,729,363 | 7,670,577 | 7,678,108 | 8,119,290 | 9,079,015 | ^{*} FY2001 is projected; all other years are actual. Source: City of Unalaska ## **Other Local Business Activity** Tourism continues to develop in the community, with new draws in the last few years associated with an increased local National Park Service presence, the opening of the Museum of the Aleutians, and the continued popularity of charter sport fishing. Sport charter fishing took off in the mid-1990s when world record sport halibut were caught locally in 1995 and 1996, with the latter fish, at 459 pounds, still representing the world record. Birding, hiking, kayaking, camping, and visiting the Holy Ascension Cathedral historic site are also tourism draws, but high cost and inconvenient transportation access make the development of this sector challenging for local businesses. Coupled with these conditions were a decrease in service caused by the discontinuation of long-time air service provider Reeve Aleutian Airways and a further drop in demand related to the crab quota decline, resulting in a situation where as of early 2001 the community was served by only one jet per day. According to long-time community residents, this has had an impact on a range of services in the community (such as the price and availability of a variety of food at stores), as well as mail and freight. Unalaska continues to support a much wider range of non-fisheries related businesses as well as fisheries support related businesses than any other community in the region. According to interviews conducted early in 2001, however, business conditions are changing with a general slow-down in the non-fisheries sectors of the economy, a trend at least partially related to recent structural changes in the groundfish fishery as well as the decline in the crab fishery. A number of businesses that serve the general public have gone out of business in the recent past, and examples of these businesses, including an office supply store, an auto parts store, a vehicle rental firm, and a bowling alley, were frequently cited during interviews. Also strongly marked was the reduction in number of more direct fishery support businesses that were needed for peak demand times. In this case, it is not that types of services are no longer available, it is more that there is less of a choice of providers of those services. One landlord reports having lost a net company, a electrical firm, a hydraulic firm, and a restaurant all out of a single building. While this is an unusual case, it does illustrate the range of businesses (and types of fleet support businesses) that have folded. Another change in the local community context noted by multiple interviewees is an increased federal presence in the community. While having nowhere near the presence as in, for example, Kodiak, the United States Coast Guard now has a detachment in the community (after the community had lobbied for many years for an increased local presence given the importance of commercial fishing in the community and region). There are also now U.S. Customs and Immigration and Naturalization Service personnel and offices in the community. One change in the community consistently mentioned during interviews with local business leaders (in an unrelated study) in early 2001 were the impacts associated with Steller sea lion protection measures that were in put in place during 2000. In the words of one community business leader, the issue is "hanging over the town" and people "can't do any planning" because of it. There is a recognition, however, among at least some of the local residents that other communities in the region are even more vulnerable to community-level disruptions resulting from these measures due to a much higher reliance on a small boat fleet that cannot effectively fish outside of the protection zones. While the seasonality of the local economy has changed with AFA related co-op management/quota allocation conditions, such that peak periods are not as high or sharp, and an increased level of activity lasts longer in the community, the interruptions of the seasons related to Steller sea lion protection measures does cause stoppages and inefficiencies at the major shoreplants in the community. The housing market of Unalaska has changed significantly in the past few years. Although there was a lull in demand following the crash of local King crab activity in the early 1980s, housing demand has been strong in the community since the development of the contemporary fishery dating back to the 1970s. There are no longer lengthy waiting lists for rental properties, and home sales are sluggish. The community has not yet seen a dramatic dip in housing costs, but there is at least some concern in the community that either investments in housing will not be realized on the sale of the property or that homes will not be able to be sold in a timely fashion if individuals chose to leave the community, which is a very different set of circumstances than have been common for many years. #### 1.2 AKUTAN Akutan is located on Akutan Island in the eastern Aleutian Islands, one of the Krenitzin Islands of the Fox Island group. The community is approximately 35 miles east of Unalaska and 766 air miles southwest of Anchorage. Akutan is surrounded by steep, rugged mountains reaching over 2,000 feet in height. The village sits on a narrow bench of flat, treeless terrain. The small harbor is ice-free year-round, but frequent storms occur in winter and fog occurs in summer. Akutan began in 1878 as a fur storage and trading port for the Western Fur & Trading Company. The company's agent established a commercial cod fishing and processing business that quickly attracted nearby Aleuts to the community. A church and school were built in 1878. The community of Akutan was previously profiled in the 1991 SIA in the Unalaska Social Impact Assessment Addendum (IAI 1991), and the details of that profile will not be recapitulated here. Akutan is the site of one of the larger shoreplant facilities that process Bering Sea pollock, and that operation is grouped with (and described with) the Unalaska/Dutch Harbor shoreplants in the inshore profile in the Sector and Community Profiles appendix to the Steller Sea Lion EIS. The purpose of this brief section is to underscore the unique aspects of Akutan with respect to potential socioeconomic assessment issues that could arise out of the groundfish management process. Akutan is a unique community in terms of its relationship to the Bering Sea groundfish fishery. It is the site of one of the largest of the shoreplants in the region, but it is also the site of a village that is geographically and socially distinct from the shoreplant. This 'duality' of structure has had marked consequences for the
relationship of Akutan to the Bering Sea groundfish fishery. One example of this may be found in Akutan's status as a CDQ community. Initially (in 1992), Akutan was (along with Unalaska) deemed not eligible for participation in the CDQ program based upon the fact that the community was home to "previously developed harvesting or processing capability sufficient to support substantial groundfish participation in the BSAI . . ." though they met all other qualifying criteria. The Akutan Traditional Council initiated action to show that the community of Akutan, per se, was separate and distinct from the seafood processing plant some distance away from the residential concentration of the community site, that interactions between the community and the plant were of a limited nature, and that the plant was not incorporated in the fabric of the community such that little opportunity existed for Akutan residents to participate meaningfully in the Bering Sea pollock fishery (i.e., it was argued that the plant was essentially an industrial enclave or worksite separate and distinct from the traditional community of Akutan and that few, if any, Akutan residents worked at the plant). With the support of the Aleutian Pribilof Island Community Development Association (APICDA) and others, Akutan was successful in a subsequent attempt to become a CDQ community and obtained that status in 1996. This action highlights the fundamentally different nature of Akutan and Unalaska. Akutan, while deriving economic benefits from the presence of a large shoreplant near the community proper, has not articulated large-scale commercial fishing activity with the daily life of the community. While US Census figures show Akutan had a population of 589 in 1990 and 713 in 2000, the Traditional Council considers the "local" resident population of the community to be around 80 persons, with the balance being considered "non-resident employees" of the seafood plant. This definition, obviously, differs from census, state, and electoral definitions of residency, but is reflective of the social reality of Akutan. The residents of the village of Akutan, proper, are almost all Aleut. As shown in Table 1.2-1, less than 16 percent of the population in 2000 was Native American/Native Alaskan. Table 1.2-3 shows the population composition by sex in 1990, and is clearly indicative of a male-dominated industrial site rather than a typical residential community. **Table 1.2-1. Ethnic Composition of Population Akutan; 2000** | | 2000 | | | | | | |------------------------|------|-------|--|--|--|--| | Race/Ethnicity | N | % | | | | | | White | 168 | 23.6% | | | | | | African American | 15 | 2.2% | | | | | | Native Amer/Alaskan | 112 | 15.7% | | | | | | Asian/Pacific Islands* | 277 | 38.9% | | | | | | Other** | 141 | 19.7% | | | | | | Total | 713 | 100% | | | | | | Hispanic*** | 148 | 20.8% | | | | | Source: U.S. Bureau of Census. Table 1.2-2 provides information on group housing and ethnicity for Akutan. Group housing in the community is almost exclusively associated with the processing workforce. As shown, 85 percent of the population lived in group housing in 1990. Also as shown, the ethnic composition of the group and nongroup housing segments were markedly different, with the non-group housing population being predominately (83%) Alaska Native, and the group housing population having almost no (1%) Alaska Native representation. Table 1.2-2. Ethnicity and Group Quarters Housing Information, Akutan, 1990 | | Total Population | | Group (| - | Non-Group
Quarters
Population | | |---|------------------|---------|---------|---------|-------------------------------------|---------| | Akutan | Number | Percent | Number | Percent | Number | Percent | | White | 227 | 37.52 | 212 | 42.32 | 15 | 17.05 | | Black | 6 | 0.99 | 6 | 1.20 | 0 | 0.00 | | American Indian, Eskimo, Aleut | 80 | 13.22 | 7 | 1.40 | 73 | 82.95 | | Asian or Pacific Islander | 247 | 40.83 | 247 | 49.30 | 0 | 0.00 | | Other race | 29 | 4.79 | 29 | 5.79 | 0 | 0.00 | | Total Population | 589 | 100.00 | 501 | 100.00 | 88 | 100.00 | | Hispanic origin, any race | 45 | 7.44 | 45 | 8.98 | 0 | 0.00 | | Total Minority Pop | 342 | 56.53 | 298 | 59.48 | 44 | 50.00 | | Total Non-Minority Pop (White Non-Hispanic) | 247 | 40.83 | 203 | 40.52 | 44 | 50.00 | Source: Census 1990 STF2 ^{*} In the 2000 census, this was split into Native Hawaii and Other Pacific Islander (pop 2) and Asian (pop 275) ^{**} In the 2000 census, this category was Some Other Race (pop 130) and Two or more races (pop11). ^{***} Hispanic' is an ethnic category and may include individuals of any race (and therefore is not included in the total as this would result in double counting). Table 1.2-3. Population Composition by Sex Akutan; 1990 | | 1990 | | | | | | |--------|------|------|--|--|--|--| | | N | % | | | | | | Male | 449 | 76% | | | | | | Female | 140 | 24% | | | | | | Total | 589 | 100% | | | | | Akutan also differs from Unalaska in terms of opportunity to provide a support base for the commercial fishery. There is no boat harbor in the community, nor is there an airport. While there is a 'local' commercial fishery, this is pursued out of open skiff-type vessels, and participation in this type of enterprise has reportedly declined in recent years. (Through the CDQ program, however, the community does participate in the commercial fishery in other ways, including partial ownership [by APICDA] of a BSAI catcher-processor.) The Akutan village corporation does derive economic benefits from the local shoreplant through land leasing arrangements and through sales of goods and services to local seafood plant employees, including check cashing services. As a CDQ community, the community of Akutan enjoys access to the BSAI groundfish resource independently of direct participation in the fishery. Akutan, like the other CDQ communities, has benefitted from the increase under AFA from 7.5 percent to 10 percent of each BSAI groundfish TAC (except for the fixed gear sablefish TACs, of which CDQ communities receive 20 percent for the eastern Bering Sea and the Aleutian Islands areas). The direct benefit/value of this increase, of course, depends upon the TAC itself as well the value of the resource (or value of the rent). Similarly, economic benefits the community derives from the local 1 percent raw fish tax from landings at the nearby plant are dependent on BSAI groundfish TACs and the resulting ex-vessel value of groundfish landings. Although this conclusion pertains to the community of Akutan, implications for the groundfish landings port of Akutan are quite different. The Trident plant is the principal facility in the Akutan port and, historically, a number of smaller, mobile processing vessels have operated seasonally out of the port of Akutan. Akutan does not have a boat harbor or an airport in the community. Beyond the limited services provided by the plant, no opportunity exists in Akutan to provide a support base for other major commercial fisheries. Indeed, alternative economic opportunities of any kind are extremely limited. While crab processing was a major source of income for the Akutan plant during the boom years of the late 1970s and early 1980s, with the economic collapse of this resource base in the early 1980s, groundfish processing became the primary source of economic activity. In 1997, for example, State of Alaska and NMFS catch records indicate that, while landings of herring and crab were reported for the Akutan plant, more than 98 percent of the total pounds landed were groundfish, and these made up more than 80 percent of the estimated total value. With respect to groundfish fishery and related potential socioeconomic impacts to Akutan, the village is in a unique position. As a CDQ community, Akutan enjoys access to Bering Sea pollock independent of direct participation in the fishery. As home community to a shoreplant, Akutan derives considerable fiscal benefits from inshore operations. As CDQ partners with both inshore and offshore entities, they derive economic benefits from both of those sectors. A change seen in the very recent past was the purchase of the Arctic Enterprise floating processor by Trident, and the move of the Arctic Enterprise from Beaver Inlet on Unalaska Island to Akutan bay. The move of the Arctic Enterprise, combined with the increase in CDQ quota, mean that both the industrial and village portions of the community appear to have captured more of the overall pollock quota post-AFA than was the case pre-AFA. In summary, the potential social impacts to Akutan as a result of groundfish management changes depends upon how one defines the community of Akutan. If the traditional village of Akutan is the unit of analysis, the fishery would appear to have little direct impact on the day-to-day lives of individuals in the community, as long as the structure of the sectors stays roughly the same. On the other hand, if the census/legal definition of Akutan is used, the Akutan is a community more than five times larger than its 'traditional/Aleut' population, and that large margin of difference in population is associated exclusively with the onshore processing operation. #### 1.3 SAND POINT AND KING COVE Sand Point is located on Humboldt Harbor on Popof Island, off the Alaska Peninsula, 570 air miles from Anchorage. Sand Point was founded in 1898 by a San Francisco fishing company as a trading post and cod fishing station. Aleuts from surrounding villages and Scandinavian fishermen were the first residents of the community. Sand Point served as a repair and supply center for gold mining during the early 1900s, but fish processing became the dominant activity in the 1930s. Aleutian Cold Storage built a halibut plant in 1946. Trident operates the current processing plant, which primarily processes pollock, Pacific cod and other groundfish, salmon, and halibut. Peter
Pan operates a buying station in Sand Point for their processing plant in King Cove. Sand Point is home port for the largest fishing fleet in the Aleutian Chain. King Cove is located on the south side of the Alaska Peninsula, on a sand spit fronting Deer Passage and Deer Island. It is 18 miles southeast of Cold Bay and 625 miles southwest of Anchorage. King Cove was founded in 1911 when Pacific American Fisheries built a salmon cannery. Early settlers were Scandinavian, European, and Aleut fishermen. Of the first ten founding families, five consisted of a European father and an Aleut mother. The cannery operated continuously between 1911 and 1976, when it was partially destroyed by fire. The main processor in King Cove is now Peter Pan, and processes pollock, Pacific cod and other groundfish, salmon, crab, herring, and halibut. In addition, several small operators conducted operations in King Cove in 2000 – one for salmon only, and the other for salmon and groundfish (other than pollock). Sand Point and King Cove, like Akutan, are a part of the Aleutians East Borough. Whereas Akutan is incorporated as a Second Class City, both Sand Point and King Cove are incorporated as First Class Cities. Like Akutan, both Sand Point and King Cove are home to one shoreplant each that processes Bering Sea pollock. Unlike Akutan, however, neither Sand Point nor King Cove are CDQ communities. Two further differences are key for understanding the link between the communities and the groundfish fishery: (a) both Sand Point and King Cove are historically commercial fishing communities that have had processing facilities as part of the community for decades; and (b) both Sand Point and King Cove have resident commercial fishing fleets that deliver to the local seafood processors. With respect to the latter point, Sand Point and King Cove are different from Unalaska. Whereas Unalaska does have vessels owned and operated by 'true' local residents, none of these vessels that would fall into this category deliver pollock to local plants, nor do they typically deliver cod on a regular basis in volumes comparable to other portions of the fleet. Sand Point and King Cove resident fleets are involved with pollock (Sand Point more than King Cove), though typically the Bering Sea pollock processed at those plants comes from deliveries from larger boats home ported outside of the community. The two communities have similar histories with respect to fishing. Sand Point was founded as a trading point and cod fishing station by a San Francisco fishing company in 1898. King Cove was established in 1911 by cannery operators and commercial fishermen, many of whom were Scandinavian immigrants who married local Aleut women. King Cove is located on the south (i.e., Pacific Ocean) side of the Alaska Peninsula, while Sand Point is located on Popof Island in the Shumagin Islands group on the Pacific Ocean side of the Alaska Peninsula. Both communities then share a Gulf of Alaska orientation or GOA/BSAI orientation that the other Bering Sea pollock communities do not. Of the two, King Cove is more Bering Sea oriented, and Sand Point more Gulf of Alaska oriented. Historically, both of these communities saw a large influx of non-resident fish tenders, seafood processing workers, fishers, and crew members each summer. For the last several decades, both communities were primarily involved in the commercial salmon fisheries of the area, but with the decline of the salmon fishery, plants in both communities have diversified into other species. The resulting ethnic diversity of population in both communities is evident in Tables 1.3-1 and 1.3-4. The predominance of males over females (Tables 1.3-3 and 1.3-6) is also an indicator of male-oriented processing employment, as well as possible differential female/male emigration from the communities. Table 1.3-1. Ethnic Composition of Population King Cove; 2000 | | 20 | 000 | |------------------------|-----|-------| | Race/Ethnicity | N | % | | White | 119 | 15% | | African American | 13 | 1.6% | | Native Amer/Alaskan | 370 | 46.7% | | Asian/Pacific Islands* | 213 | 26.9% | | Other** | 77 | 9.7% | | Total | 792 | 100% | | Hispanic*** | 59 | 7.4% | Source: U.S. Bureau of Census. Table 1.3-2 provides information on group housing and ethnicity for King Cove. Group housing in the community is largely associated with the processing workforce. As shown, 42 percent of the population lived in group housing in 1990. Also as shown, ethnicity varied between the group and non-group housing, with the non-group housing population being 67 percent Alaska Native and the group housing population being 39 percent Alaska Native. Table 1.3-2. Ethnicity and Group Quarters Housing Information, King Cove, 1990 | | Total Population | | Group (| - | Non-Group
Quarters
Population | | |---|------------------|---------|---------|---------|-------------------------------------|---------| | King Cove | Number | Percent | Number | Percent | Number | Percent | | White | 127 | 28.16 | 57 | 30.16 | 70 | 26.72 | | Black | 6 | 1.33 | 6 | 3.17 | 0 | 0.00 | | American Indian, Eskimo, Aleut | 177 | 39.25 | 1 | 0.53 | 176 | 67.18 | | Asian or Pacific Islander | 125 | 27.72 | 109 | 57.67 | 16 | 6.11 | | Other race | 16 | 3.55 | 16 | 8.47 | 0 | 0.00 | | Total Population | 451 | 100.00 | 189 | 100.00 | 262 | 100.00 | | Hispanic origin, any race | 53 | 11.75 | 53 | 28.04 | 0 | 0.00 | | Total Minority Pop | 331 | 73.39 | 139 | 73.54 | 192 | 73.28 | | Total Non-Minority Pop (White Non-Hispanic) | 120 | 26.61 | 50 | 26.46 | 70 | 26.72 | Source: Census 1990 STF2 ^{*} In the 2000 census, this was split into Native Hawaii and Other Pacific Islander (pop 1) and Asian (pop 212) ^{**} In the 2000 census, this category was Some Other Race (pop 47) and Two or more races (pop30). ^{***} Hispanic' is an ethnic category and may include individuals of any race (and therefore is not included in the total as this would result in double counting). Table 1.3-3. Population Composition: Age and Sex King Cove; 1990 | | 1990 | | | | |--------|------|------|--|--| | | N | % | | | | Male | 292 | 65% | | | | Female | 159 | 35% | | | | Total | 451 | 100% | | | Table 1.3-4. Ethnic Composition of Population Sand Point; 2000 | Race/Ethnicity | 2000 | | | | |------------------------|------|-------|--|--| | | N | % | | | | White | 264 | 27.7% | | | | African American | 14 | 1.5% | | | | Native Amer/Alaskan | 403 | 42.3% | | | | Asian/Pacific Islands* | 224 | 23.5% | | | | Other** | 47 | 4.9% | | | | Total | 952 | 100% | | | | Hispanic*** | 129 | 13.6% | | | Source: U.S. Bureau of Census. - * In the 2000 census, this was split into Native Hawaii and Other Pacific Islander (pop 3) and Asian (pop 221) - ** In the 2000 census, this category was Some Other Race (pop 21) and Two or more races (pop 26). Table 1.3-5 provides information on group housing and ethnicity for Sand Point. Group housing in the community is largely associated with the processing workforce. As shown, 21 percent of the population lived in group housing in 1990. The ethnic composition of the group and non-group housing segments were more similar than for the other communities profiled. Table 1.3-5. Ethnicity and Group Quarters Housing Information, Sand Point, 1990 | | Total Population | | Group Quarters
Population | | Non-Group
Quarters
Population | | |---|------------------|---------|------------------------------|---------|-------------------------------------|---------| | Sand Point | Number | Percent | Number | Percent | Number | Percent | | White | 284 | 32.35 | 48 | 25.40 | 236 | 34.25 | | Black | 4 | 0.46 | 4 | 2.12 | 0 | 0.00 | | American Indian, Eskimo, Aleut | 433 | 49.32 | 3 | 1.59 | 430 | 62.41 | | Asian or Pacific Islander | 87 | 9.91 | 80 | 42.33 | 7 | 1.02 | | Other race | 70 | 7.97 | 54 | 28.57 | 16 | 2.32 | | Total Population | 878 | 100.00 | 189 | 100.00 | 689 | 100.00 | | Hispanic origin, any race | 78 | 8.88 | 58 | 30.69 | 20 | 2.90 | | Total Minority Pop | 601 | 68.45 | 14 | 7.41 | 587 | 85.20 | | Total Non-Minority Pop (White Non-Hispanic) | 277 | 31.55 | 175 | 92.59 | 102 | 14.80 | Source: Census 1990 STF2 ^{****} Hispanic is an ethnic category and may include individuals of any race (and therefore is not included in the total as this would result in double counting). Table 1.3-6. Population Composition: Age and Sex Sand Point: 1990 | | 1990 | | | | | | |--------|------|------|--|--|--|--| | | N | % | | | | | | Male | 557 | 63% | | | | | | Female | 321 | 37% | | | | | | Total | 878 | 100% | | | | | The King Cove plant processes a good amount of crab and has developed groundfish processing capability, with Pacific cod as the predominant species, and with significant amounts of cod being supplied from both the GOA and the BSAI regions. This plant also processes a large amount of salmon, and some herring and halibut. The Sand Point plant does not process crab and has not processed herring since 1996, and in its groundfish operation has emphasized pollock over Pacific cod. It processes significantly more pollock than does the King Cove plant, but less "other groundfish" and much less Pacific cod of BSAI origin. Salmon is also processed in Sand Point, but much less than in King Cove. Through time, the King Cove plant has maintained a diversity of processing, while the Sand Point plant has become somewhat less diversified. Both plants are currently seeking new species and product opportunities. These dynamics have changed the distribution and peak of employment effort at the seafood plants, which have been further influenced by the affects of the AFA. Detailed production figures cannot be disclosed for the plants because of confidentiality restrictions. King Cove is somewhat unique among the four key regional groundfish ports insofar as it is relatively more dependent upon Pacific cod than pollock, among the
groundfish species landed. Sand Point follows the more typical pattern, processing more pollock than Pacific cod. The two plants vary in their pollock product mix, but both plants can now produce surimi as well as fillets. The relative dependence of the plants on different species has varied over time and with stock fluctuations. For instance, for both plants 1993 was clearly a very good year for salmon, while 1996 and 1997 were both poor salmon years. The pattern has been that the Sand Point plant depends more on pollock and groundfish in general, and the lesser (but significant) dependence of King Cove upon groundfish (most of which is not pollock) and its greater dependence on crab and salmon. While changes from 1999 to 2000 cannot be definitively stated to be other than statistical fluctuations, it is interesting to note that for King Cove the poundage processed and percentage of total plant dollars for crab decreased, while groundfish increased somewhat. For Sand Point, the pattern for 1999 and before had been for pollock to contribute more than non-pollock groundfish, both in terms of weight and value. This was reversed for 2000. These changes are made somewhat more tentative due to the lack of halibut data in the year 2000 data provided to us by NPFMC staff. One of the plants obtains Bering Sea pollock in coordination with operations owned by the same company and located in one of the Bering Sea communities. This operation is unique among inshore operators for the degree of coordination across regions and for the way Bering Sea pollock processing is managed between regions. For the other plant, GOA pollock is obtained from the local small boat fleet as well as from a small number of outside boats, but BSAI pollock is obtained exclusively from larger capacity non-resident boats. Neither plant shows up in the 1991 BSAI pollock harvest data, but both appear in the 1994 data, and both increased in volume from 1994 to 1996. The trend since 1996 has been for a decline in the amount of BSAI pollock that these plants process, with a sharp decline between 1999 and 2000, which corresponds with the implementation of AFA for onshore plants. In terms of employment, 87 percent of Sand Point's workforce is employed full time in the commercial fishery; for King Cove this figure is more than 80 percent (USACE 1998, 1997). In both cases, fishing employment is followed by local government (borough and local) and then by private businesses. Seafood processing ranks after each of these other employers, meaning that the vast majority of the workforce at the shoreplants are not counted as community residents. In terms of articulation with the community at large, the plants in Sand Point and King Cove are quite different from those in Unalaska/Dutch Harbor or Akutan. As noted, compared to Sand Point and King Cove, the development of commercial seafood processing in Unalaska/Dutch Harbor and Akutan is a relatively recent development (at least in terms of continuity of operations at specific facilities). Both Sand Point and King Cove processors have longstanding relationships with the local catcher fleet which, in turn, is the source of most employment in the community (among permanent residents). This is a sharp contrast to Unalaska. Unalaska is the site of multiple shoreplants, and has a much more 'industrial' fishery than does either Sand Point or King Cove, but this is changing, particularly with respect to Bering Sea pollock, which is not fished by the local small boat fleet. As noted above, the boats delivering BSAI pollock to Sand Point and King Cove are 'Bering Sea' boats, of the same type delivering to the inshore sector elsewhere. Another major difference between the fishing industry in Unalaska/Dutch Harbor and Sand Point and King Cove is the role of the support sector in the communities. Unalaska has a well developed support service sector, unlike either Sand Point or King Cove. In both Sand Point and King Cove, the lone processing plant has historically provided a variety of fleet support services that the plants in Unalaska no longer have to provide with the development of a support sector. In terms of relationships between inshore and offshore components of the groundfish fishery, Sand Point and King Cove are in quite different positions than Unalaska/Dutch Harbor or Akutan. Unlike Unalaska/Dutch Harbor, neither Sand Point nor King Cove have enterprises related to the offshore sector or derive direct revenues from the offshore sector (although the plant in Sand Point is part of a company which also owns catcher processors). Unlike Akutan, Sand Point and King Cove are not CDQ-qualified communities, and are thus unable to directly participate in CDQ fisheries. Changes associated with the recent restructuring of the groundfish fishery under AFA have been felt in both communities. The processors in both Sand Point and King Cove are qualified as AFA (BSAI pollock) processors. Of the two, however, only the King Cove plant also has a Co-op Processor Endorsement, as five CVs did deliver at least 80 percent of their inshore pollock to the King Cove plant during the AFA-qualifying period (while delivering most of their pollock offshore to a mothership owned by the same company as the shoreplant). The King Cove plant is relatively well located to process BSAI pollock, and is somewhat on the periphery of GOA pollock. The Sand Point processor does not have a Co-op Processor Endorsement, as every boat which delivered BSAI pollock to this plant delivered over 80 percent of its BSAI pollock to another plant owned by the same company in the Bering Sea. The operational pattern for the Sand Point plant was to serve as a "relief valve" for this Bering Sea plant during the open access race for fish. This maximized the amount of BSAI pollock that the parent company could process. With the implementation of the AFA and the end of the race for fish, the BSAI pollock season was lengthened and the rate of harvest (and processing) reduced. This much reduced the need to divert pollock to be processed at the Sand Point plant and seems to have confined this need to the "A" and "B" roe seasons. The reason given for this was that the need to harvest roe at its peak imposes a natural and inevitable "race for roe" that at times resulted in a harvest of more fish than could be processed by the Bering Sea plant alone. Sand Point and company managers saw little need to process "C" or "D" season BSAI pollock in the Sand Point plant. The imprecise processing figures we have for 2000, compared to 1999, seem to support this change, as the Sand Point plant processed significantly less BSAI pollock than in the year before, as well as significantly less pollock overall. Steller sea lion measures, and a shift of GOA pollock quota to the Kodiak Shelikof area, no doubt have a significant role in this change as well. Although the King Cove plant processes significantly more BSAI cod than the Sand Point plant, its current production is less than in the past and has been declining. The Peter Pan Seafoods 2000 Co-op Report notes that the cod sideboard allocations of the five vessels delivering pollock to the King Cove plant were allocated to the mothership sector, and they report a reduction in their tendering needs for Pacific cod. More information is available from the AFA Report to Congress (NPFMC 2001) on recent operation dynamics in Sand Point than in King Cove. Volume available to the plant has decreased, for a number of reasons, low local quotas and Steller sea lion measures among them. Prices are low, with the only real "money makers" being "by-products" such as pollock roe, cod milt, and cod stomachs. They have been forced to modify their operations accordingly, primarily to scale back and economize wherever they can. Their peak labor force used to be in the summer for salmon, but is now in January and February for groundfish. There will be a secondary peak in the summer, but earnings then will not be nearly as high. They have a much reduced labor force even at their peak (about 250+), and have closed some of their bunk house facilities. Their core processing group is now perhaps 40+ processors, maintenance, and professional people. They have fewer processor foremen positions, as well as fewer office staff. They have also reduced the inventory in their store and, perhaps more significantly, have reduced the inventory of boat supplies and repair materials that they keep in stock. According to one senior manager, "For so long the idea was to work people as many hours as possible. Now that the fish are not in the pipeline, the idea is to match the workforce to the fish throughput." There are few quantitative measures of economic activity in Sand Point which reflect the most recent dynamics. Available information on the overall budget for the City of Sand Point, and the receipt of sales taxes, indicates that these amounts have been steadily increasing (Figure 3.1-1). It should be noted that the reporting years end June 30, so that the most recent information is from June 30, 2000. The Sand Point Mayor reports that for this year (2001), sales tax receipts are significantly less than for last year, by somewhat over 20 percent. Sales taxes are composed primarily of the raw fish tax and taxes on general retail sales, and the increase in 2000 is due primarily to the collection of significantly more fish taxes than expected. Information available on the value of processing in Sand Point is not totally consistent with this fish tax information, but is subject to estimation problems, especially for products with pricing mechanisms like that of roe. It is likely that roe prices in 1999 and 2000 account for the higher than expected tax receipts. Volume of production at both the Sand Point and King Cove plants declined significantly in 2000, after hitting peaks in 1999 that were the highest since 1993. Figure 3.1-1. Sand Point Budget, 1995-2000 Retail and support
activities in Sand Point are difficult to gauge, and company records are not available. Sales before June 30, 2000 are of course aggregated into the general sales tax information presented above. The native Corporation started a retail grocery store, in order to provide some price competition for the long-time single grocer in the community (the processing plant also has a store, which is used mainly by its processing workers). This investment was made in 1997, when fishing conditions looked good, along with the purchase of a local NAPA store. The NAPA enterprise went out of business in 2000, but the store has been doing comparatively well. Corporation officers reported that even in these times of depressed economic activity that the store had gross sales of somewhat ahead of 2000 in the first quarter of 2001. They estimate that the more established store does approximately four times as much business as their store, and that store certainly stocks a much wider range of goods. The corporation has owned a local tavern since 1975, and it has consistently made a profit. The corporation's hotel is also successful, although it is busier in the winter than in the summer. A private bed and breakfast that was started recently has developed a strong business and tends to be full year-round. There are limited restaurants in the community, and one is currently up for sale. Housing in Sand Point has always been in short supply, primarily because most housing is built through government agencies. There has not been any recent residential construction. Several families looking for permanent housing were staying at the corporation's hotel during the winter of 2000-2001. This is not only an indicator of a restricted housing supply, but also an indicator that the hotel has rooms available during the winter. Local residents did report that some houses are occupied only seasonally, in conjunction with the summer fisheries, but that such houses were generally not available for rent, except perhaps to family, friends, and other "known" people. The Sand Point and King Cove economies are still very cyclical, and tied to fishing and fish processing. In early 2001, because of expected low salmon prices, most people were expecting severe local effects from a number of fisheries related downturns as well as non-fisheries related events. For example, the failure of Reeve Aleutian Airlines has meant less travel by local residents. Several families have moved out of Sand Point and the school enrollment is significantly lower in 2001 and in 2000. Mail service is said to have been decreased in frequency. Overall retail economic activity is said to be reduced, and the corporation did not operate the lounge (bar and simple food) associated with the hotel in the winter of 2000-2001, although the tavern still did a good business. Given that many of the factors cited for these effects are regional (low fish prices, Steller sea lion measures, competition from farmed fish, Area M changes, and other management and resource concerns), it is possible that King Cove and Sand Point may grow in size because of population movement from smaller regional communities in even worse economic shape. This is not likely to strengthen the local economy, however. The dynamics of the "available labor force" were also noted to have recently changed. Local resident wage and salary jobs have in the past been fairly well differentiated by sex – men either fished or worked at some "outside" occupation in a "land" department such as construction, maintenance, or fire and police. Women tended to fill office and service positions. Employers have started to see a change in this pattern, as more men are applying for steady (even if relatively low paying) jobs on land rather than fishing. The most commonly cited factor for this was the projected low salmon price, with the expectation that salmon members crew shares would not amount to very much. Other families have considered moving. The common pattern in the past has been for locals to graduate from high school and either go fishing or move to another community. There has been relatively little turnover in local jobs, as these jobs tend to be highly valued by those who occupy them since there are relatively few of them (and there are of course jobs that are held by more transient non-locals). Local opportunities are seen as quite constrained, and the local Native Corporations are looking more for non-local investment opportunities rather than local ones. It was pointed out by several people that development opportunities in Sand Point are quite limited. Limited air service makes the shipment of fish products very difficult, and precludes a great number of "value added" enterprises. Reeves Aleutian Airlines flew relatively large planes into Sand Point, but has been replaced by PenAir, which flies smaller planes and is more focused on passenger and mail service than on cargo. The annual fishing and processing cycles for King Cove and Sand Point processors and communities have changed in the very recent past, and this is in good part attributable to AFA. For King Cove, crab deliveries and processing were much reduced in 2000 from those in 1999, and BSAI Pacific cod may have been similarly affected by AFA sideboard measures. The Peter Pan Seafoods 2000 Co-op Report indicates that the King Cove plant took delivery of Bering Sea pollock on four days in February, five days in March, two days in April, ten days in September, and five days in October. For Sand Point, plant managers reported less Bering Sea pollock being delivered during the "A" and "B" seasons, and very much less, if any, during the "C" and "D" seasons. This reflects the historical pattern for King Cove BSAI pollock, but a reduction for Sand Point. Crab and Pacific cod reductions were much more significant for King Cove. While the BSAI pollock reductions were significant for the Sand Point plant, it is likely that they are only part of a much larger pattern also involving Steller sea lion protective measures and the availability (or lack of it) of pollock quota in the GOA. Similarly, community services are perceived to be in danger from decreased revenue flows resulting from reduced processing. #### 2.0 KODIAK REGION COMMUNITIES In the Kodiak region, only the City of Kodiak has direct links with the groundfish fishery, so it will be the only regional community discussed in detail. This section will draw upon previous profiles (IAI 1991, Northern Economics et al. 1994, IAI 1994) as well as more current information from the Groundfish SEIS and field interviews. #### 2.1 KODIAK Kodiak's identity is that of a fishing community. Through time, both its fishermen and processors have developed a dependency upon groundfish (summarized below), but a singular characteristic of both sectors is the participation in many different fisheries. That is, many participants display a wide diversification in their fishery operations. This section will focus on their participation in the groundfish fishery, and on linkages between the community and the groundfish fishery. Commercial fish processing in the Kodiak region began on the Karluk spit in 1882. Not long after that, canneries were established in the community of Kodiak. While the quantity and form of shore processing plants in Kodiak has changed, this sector remains an influential component of the fishing industry that is, in turn, fundamental to the community and its economy. Shore processing facilities or "canneries" in the Kodiak region concentrated primarily on salmon and herring prior to 1950, although there was a cold storage facility at Port Williams where halibut was frequently landed. As their common name suggests, the product produced was most often canned fish. Cannery operations expanded in the 1950s to accommodate King crab processing. Thirty-two processors processed 90 million pounds of crab in 1966. In the following years, there was some growth within the sector; for example, one new shore plant was built in Kodiak in 1968. Declining harvest levels, however, prompted several shore plants to move their operations during the late 1960s and early 1970s to Unalaska/Dutch Harbor in the Aleutian Islands, closer to the larger supply of Bering Sea-Aleutian Island King crab. This move also diverted some of the crab which had previously been taken to Kodiak for processing, and the number of shore plants in Kodiak declined by more than half. A temporary resurgence in the Kodiak red King crab stocks in the mid-to-late 1970s instigated expansion of existing plants once again, and fostered the building of two new plants in Kodiak. Larger freezing capacity was a notable addition to most of the shore plants. This allowed flexibility in storing larger volumes and processing more species into more diversified products. Larger docks also became important to the processors so that they could unload more boats in a given amount of time. With a larger overall capacity to process fish, competition by the plants for the fish resource increased, and the rate of return for individual shore plants declined. Diminishing crab stocks as the fishery entered the 1980s compounded this problem. After a record catch in 1980, the Kodiak King crab stocks crashed. Several factors, including over harvesting and natural conditions, have been cited by fishermen and scientific sources as contributors to this collapse. There has not been a red King crab opening in the Gulf of Alaska since 1982. Waters around Kodiak still produce tanner and Dungeness crab fisheries, and Kodiak shore plants process these species in addition to the few deliveries of crab they receive from boats returning from the Bering Sea fishery. When King crab stocks started to crash in the late 1960s, some of the Kodiak plants sought to diversify. At least one plant added facilities to separate the previously dominant crab line; and the main plant was then converted into a shrimp plant.
Other plants report they "evolved into shrimp" to augment their crab production. Kodiak shrimp landings peaked in 1971, and stocks crashed in the late 1970s. The reason, while not definitive, may have been related to predation by large stocks of cod and pollock. Between 1978 and 1981, several Kodiak processing plants stopped shrimp production. Efforts to fish Dungeness crab along the Kodiak coastline were slower to intensify, and landings peaked in 1981. At about the time when the Kodiak shore plants started processing shrimp, the bairdi tanner crab fishery "started to become a reality," but the tanner crab seasons, like the seasons of other crab species, soon became shorter and less productive. Many of the plants maintained halibut production lines while they were processing crab, shrimp, and salmon. At that time, halibut processing was not the intense activity it was to become under the Olympic open access system. The season was open most of the year and there were relatively few boats fishing it. As the crab and shrimp faded as viable resources to maintain shore-plant production, salmon became much more important to the processing companies in Kodiak, as they continued looking for products to fill the gaps in their production. The provisions of the Magnuson Act of 1976 gradually expelled the foreign fleets capitalizing on the groundfish fishery within the Gulf of Alaska EEZ, while American boats and processors entered the fishery. By the late 1970s a few Kodiak shore plants, according to one plant manager, started experimenting with groundfish resources "because there wasn't much crab to do." However, the majority of the groundfish caught prior to 1988 was processed aboard foreign vessels, first by wholly foreign operations, and then by joint ventures where American boats delivered to floating foreign processors. One informant described the late 1970s and 1980s as years of "forced" diversification: In that same time period [late 70s-early 80s] we started playing around with halibut and black cod, and very early playing around with other groundfish, and then in the mid-80s we got a lot more serious, and then in 1988 we built the new factory for surimi. It's pretty easy to see that we were kind of just forced into it. I mean, if you wanted to stay in the fish business you got into groundfish because that is all there was. And of course during that whole period, we continued to process salmon and herring and other products that were available to us. Plant and dock expansions fostered their ability to further utilize groundfish resources. The first surimi production in Alaska took place in Kodiak in 1985 with the aid of an Alaska Fisheries Development Foundation Saltonstall-Kennedy grant. Also in the mid-80s, "the State of Alaska came out with their tax credit program for getting into the groundfish, and so we fully utilized that," according to one plant operator, and his was not the only plant to do so. In 1987, a single plant processed about one-third of all the pollock that was taken out of the Gulf, but tax credits and other incentives contributed to additional effort and capitalization in the processing sector. This had limiting effects on large volumes being received by any one plant. The growth of the shore-based groundfish fishery in the Gulf of Alaska provided most Kodiak processors with products needed to keep their plants running nearly year round. Large capital investments made the capacity to process groundfish resources greater than the total amount delivered, but a number of factors have converged to change operations significantly. Changing seasons have forestalled the opportunity to run plant operations year-round or at maximum capacity for extended periods of time, and competition for the "race for fish" stimulated overcapitalization in both the harvesting and processing sectors. Inshore/Offshore-1 management measures provided protection to GOA onshore processors and the harvesters who deliver to them from preemption by the offshore sector, but even with license limitation the GOA fishery is still characterized by overcapitalization. The derby-style fishing tactics and, in particular, the large volumes of pollock that can be caught in a short amount of time with contemporary equipment and technology can effectively "plug" the shore plants. If plants increase their capacity to handle these peak demands, they are essentially "capitalizing for inefficiency" as much of this capacity will be idle for most of the year. After the implementation of the AFA in the Bering Sea, some Kodiak processors also cite the "race for history" in GOA fisheries (and especially pollock) as an additional pressure towards inefficiency in local groundfish fisheries, in anticipation of eventual groundfish rationalization of some sort in the GOA. The development or evolution of the Kodiak harvesting fleet has essentially paralleled that of the processors to which they deliver (along with the development of a fleet component that in part or in whole participates in Bering Sea fisheries). The details and dynamics are somewhat complex, but have resulted in a fleet of multi-species, multi-gear boats (although trawlers may be somewhat more specialized, they can also switch gear or work as tenders). This versatility is especially important to harvesters as seasons have become more compressed and competition to harvest the resources has increased, although management restrictions such as license limitations or IFQs have increased the cost and perhaps reduced the possibility for such versatility. Kodiak fishermen greatly value having options and making their own decisions. Thus, both the potential benefits (generally increased stability of access and amount harvested for those who can fish) and the potential costs (increased cost for entry into fisheries and reduced flexibility) of any proposed management alternatives are generally quite clear to them. Kodiak's economy has become increasingly diversified. The Coast Guard base, although relatively self-sufficient, contributes a great deal to the local economy. Housing has been relatively scarce since the 1980s and new house construction has been constant since that time, both to meet this demand as well as in a response to increased population and more Coast Guard personnel living off-base. The housing market is currently softer than it has been in the collective memory of most Kodiak residents, due to the problems of the fishing industry. The service sector, and especially the retail sector, has continued to grow and has become increasingly important. Fishing support services have been affected by the downturn in the fishing industry. The local timber industry is at a relative low point currently, but has been significant in the past. Education is an important economic and social component, represented by the facilities of Kodiak College and The Fishery Industrial Technology Center. The aerospace industry has the potential, through the rocket launch facility, to contribute to the economy both directly as well as more indirectly through support services and facilities provided to outside specialists who work at the launches. #### **Population** Table 2.1-1 provides sufficient detail to discuss Kodiak's gross population dynamics. The Russian history of Kodiak will not be discussed here. The City of Kodiak did not attain the status of the largest community on the island until about 1920 or so, and has grown steadily since then. The KIB was formed much later, and numbers for the borough are not available until 1960 when 7,174 people were enumerated. Named places within KIB only totaled 3,320 people however (mostly in the City of Kodiak). Based on present conditions, it can be assumed that most of the difference (whatever its "true" value) represented people living in the area of, but outside of the city limits of, the City of Kodiak (Linda Freed, personal communication 2001). This would account for a good deal of the sudden increase between 1950 and 1960 of the population of the "Greater City of Kodiak" (Table 2.1-1). Table 2.1-1. Kodiak Island Region Population 1880-2000 | Year | KIB | Greater City of
Kodiak ¹ | City of Kodiak | Total Hinterland ² | |------|--------|--|----------------|-------------------------------| | 1880 | NA | 0 | 0 | 694 | | 1890 | NA | 495 | 495 | 1,334 | | 1900 | NA | 341 | 341 | 623 | | 1910 | NA | 438 | 438 | 655 | | 1920 | NA | 374 | 374 | 343 | | 1930 | NA | 442 | 442 | 444 | | 1940 | NA | 864 | 864 | 589 | | 1950 | NA | 1,710 | 1,710 | 567 | | 1960 | 7,174 | 6,482 | 2,628 | 692 | | 1970 | 6,357 | 5,358 | 3,798 | 999 | | 1980 | 9,939 | 8,842 | 4,756 | 1,097 | | 1990 | 13,309 | 11,610 | 6,365 | 1,699 | | 1999 | 13,989 | 12,185 | 6,893 | 1,804 | | 2000 | 13,913 | 12,211 | 6,334 | 1,702 | ¹ "Greater City of Kodiak" encompasses the City of Kodiak, Kodiak Station, and the derived unincorporated population – see text ² "Total Hinterland" is the total population of all named places on Kodiak Island, other than the City of Kodiak and Kodiak Station The 2000 "unincorporated population" is 4,037 and is generally believed to approximate the population that could be considered part of the "greater City of Kodiak" area but not within its incorporated city limits. This "unincorporated" population is thus equal to about 64 percent of the city's 2000 incorporated population of 6,334. This is a dramatic relative increase, from only 50 percent in 1999, and reflects a slight increase in the "unincorporated" population and a decrease in the City of Kodiak population. An additional 1,840 people live on the Coast Guard base, which most people also consider as part of the "greater City of Kodiak" area. Together these three populations include 12,211 of the KIB's total 2000 population of 13,913, or about 86 percent. Note that this does not include Chiniak or Women's Bay (about 5 percent of the KIB's population) as part of the "Greater
City of Kodiak," although it could be argued that they should be. This calculated percentage has varied from 84 to 90 percent since the formation of the KIB. Prior to that time (1880-1950) the City of Kodiak had been increasing in size relative to the other named places on the island (Table 2.1-1). A common dynamic in fish processing towns is that the population increases seasonally, during peak harvest and processing periods. In Kodiak, this has historically occurred in summer (July and August). With the development of groundfish processing, Kodiak processors have increasingly tried to operate year-round with an increasingly resident labor force. The strong national economy has also decreased the number of people willing to come to Kodiak to work seasonally, and the cost of transporting and training such temporary employees has also increased. While such transient workers are still part of Kodiak, they had not been as significant as in the past, due to the development of a more resident processing work force. Recent trends may be for the increased employment of more transient workers. These dynamics are discussed below in terms of the processing and harvesting labor force. ## Ethnicity Kodiak is a complex community in terms of the ethnic composition of its population. Sugpiaqs (Koniags) were the original inhabitants of Kodiak Island. In the late 1700s Russian contact and their sea otter operations had devastating effects on the Native population and culture. Alutiiq is the present-day Native language. Alaska (and Kodiak) became a U.S. Territory in 1867, and a cannery opened on Karluk spit in 1867. This marked the start of the development of commercial fishing on Kodiak, although Karluk remained the largest community on the island until about 1920. Fishing and military buildup associated with WWII brought many non-Natives to Kodiak, primarily Caucasians but also a substantial number of other minorities, at least initially associated primarily with fish processing employment. Tables 2.1-2 through 2.1-4 below present some basic time series information on ethnicity. While the information is not all directly comparable due to changing definitions and different sources, certain conclusions are fairly clear. Most Filipino or Asian and Pacific Islanders live in the City of Kodiak. Nearly all can be assumed to live in the immediate area of that city. They are the segment of the KIB population that is most rapidly increasing, from an unknown population in 1970 (but no more than 3 percent) to 6+ percent in 1980 to 11+ percent in 1990 to 17 percent in 2000. This supports the common community perception, and plant manager reports, that fish processing workers are more of a resident work force than in the past. The Alaskan Native population has stayed at approximately the same percentage through time, but is clearly a smaller percentage of the City of Kodiak population than it is of the KIB as a whole. The Caucasian population has declined in terms of percentage over time. Overall, there has thus been a gradual, long-term shift in ethnic composition, with Asian and Pacific Islanders increasing in percentage and Caucasians declining in percentage. Native Americans and African Americans have shown relatively little change. The U.S. Census Bureau also has collected information on people of "Hispanic Origin" and it is potentially useful as an indicator of population dynamics. Plant managers have reported that they are hiring more Hispanics than in the past, and the limited census information available supports the anecdotal information that the Hispanic population is increasing, located primarily in the City of Kodiak (KIB website). This is the same pattern and dynamic described in IAI 1991. Table 2.1-2. Ethnic Composition of Population Kodiak Island Borough; 1970, 1980, 1990 & 2000 | | 1970 | | 19 | 1980 | | 1990 | | 2000 | | |------------------------|-------|---|-------|------|--------|------|--------|-------|--| | Race/Ethnicity | N | % | N | % | N | % | N | % | | | White | NA | - | 7,046 | 71% | 9,289 | 70% | 8,304 | 59.7% | | | African American | NA | - | 72 | 0% | 135 | 1% | 134 | 1% | | | Native Amer/Alaskan | NA | - | 1,710 | 17% | 1,723 | 13% | 2,028 | 14.6% | | | Asian/Pacific Islands* | NA | - | 624 | 6% | 1,492 | 11% | 2,342 | 16.8% | | | Other** | NA | • | 283 | 3% | 670 | 5% | 1,105 | 8% | | | Total | 6,357 | • | 9,939 | 100% | 13,309 | 100% | 13,913 | 100% | | | Hispanic*** | NA | • | 204 | 2% | NA | - | 848 | 6.1% | | Source: U.S. Bureau of Census. - * In the 2000 census, this was split into Native Hawaii and Other Pacific Islander (pop 110) and Asian (pop 2,232). - * In the 2000 census, this category was Some Other Race (pop 387) and Two or more races (pop 718). ^{***} Hispanic' is an ethnic category and may include individuals of any race (and therefore is not included in the total as this would result in double counting). Table 2.1-3. Ethnic Composition of Population Kodiak City; 1970, 1980, 1990 & 2000 | | 1970 | | 1980 | | 1990 | 2000 | | | |------------------------|-------|------|-------|------|-------|------|-------|-------| | Race/Ethnicity | N | % | N | % | N | % | N | % | | White | 3,094 | 81% | 3,337 | 71% | 4,028 | 63% | 2,939 | 46.4% | | African American | 44 | 1% | 26 | 1% | 47 | 1% | 44 | 0.7% | | Native Amer/Alaskan | 479 | 13% | 573 | 12% | 629 | 10% | 663 | 10.5% | | Asian/Pacific Islands* | NA | - | 554 | 12% | 1,282 | 20% | 2,069 | 32.6% | | Other** | 116 | 3% | - | - | 379 | 6% | 619 | 9.8% | | Total | 3,798 | 100% | 4,686 | 100% | 6,365 | 100% | 6,334 | 100% | | Hispanic*** | NA | _ | 196 | 4% | NA | - | 541 | 8.5% | Source: U.S. Bureau of Census. Table 2.1-4 provides information on group housing and ethnicity for Kodiak. Group housing in the community is largely associated with the processing workforce. As shown, only six percent of the population lived in group housing in 1990. This is a much lower percentage of population in group quarters than in the other communities profiled. Table 2.1-4. Ethnicity and Group Quarters Housing Information, Kodiak, 1990 | | Total Population | | Group C | - | Non-Group
Quarters
Population | | | |---|------------------|---------|---------|---------|-------------------------------------|---------|--| | Kodiak City | Number | Percent | Number | Percent | Number | Percent | | | White | 4028 | 63.28 | 192 | 53.93 | 3836 | 63.84 | | | Black | 29 | 0.46 | 3 | 0.84 | 26 | 0.43 | | | American Indian, Eskimo, Aleut | 811 | 12.74 | 21 | 5.90 | 790 | 13.15 | | | Asian or Pacific Islander | 1282 | 20.14 | 118 | 33.15 | 1164 | 19.37 | | | Other race | 197 | 3.10 | 22 | 6.18 | 175 | 2.91 | | | Total Population | 6365 | 100.00 | 356 | 100.00 | 6009 | 100.00 | | | Hispanic origin, any race | 407 | 6.39 | 42 | 11.80 | 365 | 6.07 | | | Total Minority Pop | 2429 | 38.16 | 181 | 50.84 | 2248 | 37.41 | | | Total Non-Minority Pop (White Non-Hispanic) | 3936 | 61.84 | 175 | 49.16 | 3761 | 62.59 | | Source: Census 1990 STF2 ^{*} In the 2000 census, this was split into Native Hawaii and Other Pacific Islander (pop 59) and Asian (pop 2,010) ^{**} In the 2000 census, this category was Some Other Race (pop 276) and Two or more races (pop 343). ^{***} Hispanic' is an ethnic category and may include individuals of any race (and therefore is not included in the total as this would result in double counting). #### Sex Composition The KIB is unbalanced in terms of ratios of males to females (Table 2.1-5). The City of Kodiak shows a similar imbalance, and has been relatively stable in this regard for the period 1970-2000 (Table 2.1-6). This is characteristic of communities where at least one major economic sector disproportionately employs single members of one sex. The fishing industry has historically employed many single males, both as harvesters and processors. Although this population has apparently become more resident (rather than transient) than in the past, evidently this has not greatly affected the overall population's sex composition. Single males are still disproportionately attracted to Kodiak, and females may tend to migrate out more than do males. IAI 1991 indicates that the male/female ratio for the Native population was approximately equal, as would be expected from a resident population. The sex ratio for Caucasians was somewhat skewed (54/46), and for Filipinos was even more skewed. This was interpreted as evidence for a relatively resident Native population, with a predominately resident Caucasian population somewhat more prone to movement in and out, and a much more mobile "other minority" population which contained a smaller percentage of family units with children. This interpretation seems to continue to apply. Table 2.1-5. Population by Sex, Kodiak Island Borough; 1990 | | 1990 | | | | | | | |--------|--------|------|--|--|--|--|--| | | N | % | | | | | | | Male | 7,395 | 56% | | | | | | | Female | 5,914 | 44% | | | | | | | Total | 13,309 | 100% | | | | | | **Table 2.1-6. Population by Sex, Kodiak City; 1970, 1980, and 1990** | | 1970 | | 19 | 80 | 1990 | | | |--------|-------|------|-------|------|-------|------|--| | | N | % | N | % | N | % | | | Male | 2,055 | 54% | 2,498 | 53% | 3,496 | 55% | | | Female | 1,743 | 46% | 2,188 | 47% | 2,869 | 45% | | | Total | 3,798 | 100% | 4,686 | 100% | 6,363 | 100% | | ## Housing Types and Population Segments Household type in Kodiak varies by population segment, although information is far from systematic in this regard. In the 1980s housing was in very short supply, and it was not unusual for complete strangers to be more than willing to share space in a marginal housing unit. Sales of houses and the rental of apartments was almost totally through word of mouth and almost instantaneous. This has changed to the point where houses are now on the market for a period of time more typical of other Alaskan urban communities before selling, although apartment vacancy rates are
still lower than are private housing vacancies. Average rent for apartments is higher or equal to rent in other Alaskan urban communities, although the vacancy rate for units is higher than in places such as Anchorage, Juneau, and the Matanuska-Susitna Borough (AHFC 2001). Construction of new housing to meet the local demand has continued through the present, although it may have slowed somewhat in the recent past, and contractors are building few or no new houses on speculation. There are incentives which have encouraged the building of new housing outside of Kodiak city limits. The state will subsidize the mortgage rate one full percentage point for housing outside of the City of Kodiak. Further, undeveloped land within the current city limits is somewhat scarce. It is recognized that fish processors tend to live in smaller structures and/or with more household members, than do people with other employment. There are sections of town or developments where certain ethnic groups or socioeconomic classes of people are concentrated. However, there are also members of these same groups scattered throughout Kodiak. One housing dynamic that had been operating until the recent past, already mentioned above, has been that of the development of a resident processing force. Kodiak processors had been able to close down bunk houses as those attracted to Kodiak by fairly steady processing work preferred more private housing in the community. With the more recent contraction of fishing seasons and processor operating days, the processing labor force has once again become somewhat transient. Processors report that they can maintain only a smaller "core" group of employees than has been the case in the past, and several have reopened or even constructed bunkhouses of sufficient size to handle their transient peak labor needs. There are still local people who work in the processing plants on a less than full-time basis, but the pay scale associated with most processing work requires a large number of hours to support a local resident. Other than for peak processing periods most labor is still local and has some sort of local housing arrangement. Systematic information is lacking, but anecdotally the same mechanism by which people are recruited to Kodiak to work in fish processing also allows them to find a place to live. Many such workers come because they have a relative or friend who is already working in Kodiak. This person then becomes a resource to locate housing. This is also one reason that household size and household structure tends to be different for different ethnic groups in Kodiak, and is especially fluid for fish processor workers. The Coast Guard base also affects the local housing supply in that it is "home" to close to 2,000 people. The base is reported to have been built in the 1930s as a temporary facility, and so had a large supply of substandard housing. Much of this has since been dismantled, with a substantial but not equivalent amount of new and better housing being erected on-base. Most Coast Guard personnel have the option of living off-base if they prefer, so this has increased the local demand for housing. ## Seasonality of the Kodiak Economy The regular and cyclical annual variation endemic to the Kodiak Island region's fishing economy was introduced in the general regional employment discussion above. This section merely wishes to reinforce this point, using the City of Kodiak as a focused example. The Kodiak Chamber of Commerce has provided city sales tax receipt information for the first quarter of 1994 through the fourth quarter of 1999 (Figure 2.1-1). Graphs of tax receipts over this period, by quarter, are presented for total sales receipts and selected economic sectors. The comparison of these graphs is the basis for the following brief discussion. Total sales tax receipts are variable in a regular, cyclical way – but within a relatively well-defined range (the high point is generally no more than 1.5 times the low point, although that range seems to be increasing through time). Cannery receipts can be seen to vary in the same way as do total sales receipts, but the fluctuation between high and low points is much more extreme (the high point is over two times the low point). City boat harbor revenues are even more extreme, but this is an artificial variation, as most long-term moorage fees and such are billed and paid on an annual basis. On the other hand, charter boat revenues are perhaps the most extreme case of true extreme seasonal variation in economic activity, from zero in the winter to a peak in the summer. As this industry also depends on fish (primarily salmon and halibut), it has the same seasonal variation pattern as does the commercial processing sector. Retail sales, on the other hand, while showing some seasonal variation in response to the variation in many of primary economic sectors, exhibits a much narrower range of variation than does total sale receipts. This is what would be expected, as a certain level of sales has to be maintained year-round to support the resident population. Sales would increase during peaks of economic activity, in proportion to the size of the peak in relation to the "base" level of sales. The city utilities graph is especially telling in this regard. The variation is less cyclical, but does exhibit some seasonality confounded by an overall trend towards increased revenues (increased use of utilities). This is an indicator that Kodiak has been experiencing consistent growth, both in population, housing supply, and general infrastructure. The last graph can be no more than suggestive, but the decline in revenues for artists and photographers may suggest that there is less discretionary income in the community, or that such expenditures for luxury or specialty items are increasingly being spent outside of the region. Information through the fourth quarter of 2000 is now available, but the chart has not been updated as the pattern is essentially the same (Kodiak Chamber of Commerce 2001). As for Sand Point, this pattern may mask some of the indications of a local economic downturn by reporting only through June of 2000. Also, Kodiak has a more robust and diversified economy than does Sand Point, and sales tax receipts are an overall economic indicator, and do not necessarily reflect the contraction of one economic sector which is countered by the expansion of another. While both Kodiak and Sand Point are the regional centers for government for their respective regions, that of Kodiak is much larger. Kodiak also has a much larger school system as well as a branch of the University of Alaska system. Figure 2.1-1. Kodiak Seasonal Economic Fluctuations Still, excluding the U.S. Coast Guard, 5 of the top 6 employers in Kodiak in 1996 were fish processors, and one more was listed in the top 20 employers (Table 2.1-7). Notably absent from the list is the K-Mart, which opened in 1999 and that should no doubt also be present on the list. It is likely that seafood companies would still predominate on a list of the top 20 Kodiak employers in 2000, although their totals would be lower and they would probably fall to lower positions on the list. Table 2.1-7. Top 20 Kodiak Employers, 1996 | Rank | Employer | Avg. Monthly
Employment | |------|---|----------------------------| | 1 | Ocean Beauty Seafoods, Inc. | 451 | | 2 | Kodiak Island Borough School District | 376 | | 3 | Tyson Seafood Group, Inc | 365 | | 4 | International Seafoods of Alaska, Inc | 244 | | 5 | Cook Inlet Processing, Inc. | 247 | | 6 | Alaska Pacific Seafoods ,Inc. | 179 | | 7 | City of Kodiak | 169 | | 8 | Safeway Inc. | 153 | | 9 | Providence Kodiak Island Medical Center | 134 | | 10 | Western Alaska Fisheries | 100 | | 11 | Ben A. Thomas Inc. (logging) | 87 | | 12 | Kodiak Area Native Association | 76 | | 13 | Alaska Commercial Company | 76 | | 14 | Alaska Department of Fish & Game | 74 | | 15 | Kodiak Island Borough | 71 | | 16 | University of Alaska Anchorage | 70 | | 17 | U.S. Department of Transportation | 70 | | 18 | Silver Bay Logging, Inc. | 61 | | 19 | AK MAC Inc. (McDonald's) | 49 | | 20 | Buskin River Inn | 41 | Source: Kodiak Chamber of Commerce website ## **Links to the Groundfish Fishery** The development of commercial fishing in Kodiak was summarized above. Table 2.1-8 below displays the total volume of fish landed at Kodiak for 1984 through 1999. Kodiak has consistently ranked in the top three U.S. ports in terms of value of fish landings and in the top seven in terms of volume of landings. Table 2.1-8. Volume and Value of Fish Landed at Kodiak, 1984-1999 | Year | Pounds (millions) | U.S. Ranking | Value (millions) | U.S. Ranking | |------|-------------------|--------------|------------------|--------------| | 1984 | 69.9 | 7 | 113.6 | 2 | | 1985 | 65.8 | 6 | 96.1 | 3 | | 1986 | 141.2 | 7 | 89.8 | 3 | | 1987 | 204.1 | 3 | 132.1 | 2 | | 1988 | 304.6 | 3 | 166.3 | 1 | | 1989 | 213.2 | 6 | 100.2 | 3 | | 1990 | 272.5 | 3 | 101.7 | 3 | | 1991 | 287.3 | 4 | 96.9 | 3 | | 1992 | 274.0 | 3 | 90.0 | 3 | | 1993 | 374.2 | 2 | 81.5 | 3 | | 1994 | 307.7 | 2 | 107.6 | 2 | | 1995 | 362.4 | 2 | 105.4 | 2 | | 1996 | 202.7 | 5 | 82.3 | 3 | | 1997 | 267.5 | 6 | 88.6 | 3 | | 1998 | 357.6 | 5 | 78.7 | 3 | | 1999 | 331.6 | 6 | 100.8 | 3 | Source: NMFS, past years posted on KIB website Table 2.1-9 lists detailed information on total fish landings for Kodiak for 1997 by species or general category. The three most important groupings for our purpose are salmon, halibut, and groundfish. In terms of volume landed, these categories account for about 22, 4, and 65-70 percent of the total, respectively. In terms of value, the respective percentages are about 23, 25, and 32-35. Thus, groundfish are the largest component of the fishery by volume, as well as a significant component in terms of value. Pollock are the highest volume groundfish, but the cod harvest has
the highest groundfish ex-vessel value. Flatfish and sole comprise a third component of the groundfish complex, lower in volume and value but also important for harvesting and processing operations. Rockfish are a fourth component. Sablefish and herring were also significant components of 1997 landings. Table 2.1-9. Fish Landed at the Port of Kodiak, 1997 | Species | Pounds (thousands) | % of Total Pounds | Ex-vessel Value | % of Total Value | |---------------------|--------------------|-------------------|-----------------|------------------| | Bering Sea Crab | 509,389 | 0.2 | \$1,781,948 | 2.1 | | Dungeness Crab | 650,248 | 0.2 | 1,316,106 | 1.6 | | Scallops | 398,152 | 0.1 | 2,600,000 | 3.1 | | Sea Cucumbers | 130,915 | 0.0 | 151,861 | 0.2 | | Miscellaneous | 18,641 | 0.0 | 19,691 | 0.0 | | Octopus | 218,327 | 0.1 | 124,614 | 0.2 | | Halibut | 11,039,896 | 4.1 | 20,975,802 | 25.3 | | Pacific Cod | 73,139,944 | 27.4 | 15,546,138 | 18.8 | | Sablefish | 3,887,386 | 1.5 | 8,014,256 | 9.7 | | Pollock | 83,331,663 | 31.2 | 8,139,083 | 9.8 | | Flatfish | 16,636,317 | 6.2 | 2,947,214 | 3.6 | | Flathead Sole | 2,519,706 | 0.9 | 352,591 | 0.4 | | Pacific Ocean Perch | 4,833,278 | 1.8 | 242,446 | 0.3 | | Rockfish | 2,997,638 | 1.1 | 390,720 | 0.5 | | Rex Sole | 666,202 | 0.2 | 153,253 | 0.2 | | Black Rockfish | 174,389 | 0.1 | 59,114 | 0.1 | | Salmon | 57,828,811 | 21.7 | 18,798,037 | 22.7 | | Herring | 7,982,000 | 3.0 | 1,273,000 | 1.5 | | Total | 266,962,938 | 100.0 | 82,885,874 | 100.0 | Source: KIB Website The following discussion of the fishing industry is divided into the harvesting and processing sectors, as each is extremely important for the Kodiak economy and community. A third section provides some general contextual information on fishery industry support services. #### Harvesting The enumeration and geographic distribution of the groundfish catcher vessel sector is detailed in previous documents and abstracted for communities of interest for this document. The most important point in regard to the Kodiak component of this fleet is that most are multi-gear and multi-species boats. The majority of boats harvesting groundfish and crab for deliveries to Kodiak shore processors are Kodiak-based boats. Non-local boats from Newport or Seattle augment the trawl and longline fleets. One recent development, with the shift of GOA pollock quota from areas 610 and 620 to the Shelikof Area has been the temporary transfer of some boats from the Trident plant in Sand Point to the Trident plant in Kodiak. Vessels in this fleet usually have a handshake agreement with a shore processor for the delivery of fish. The vessel is said to "work for" the shore plant and sometimes the plant operators refer to "their boats" meaning those with which working relationships exist. These vessels deliver to that plant on a regular basis. The size and composition of processor fleets vary, depending on the plant's capacity and product mix. Most of the boats that deliver to Kodiak processors are multi-purpose vessels that can change fisheries to meet the current market and fishing circumstances. For example, some vessels will switch between crab, halibut, and cod or crab, halibut, and pollock. One vessel reported that he fished for in excess of 20 species with three different types of gear. The size of a processor's fleet depends on what season it is and what they are targeting at the time. It is not uncommon, however, for a plant to have a fleet of 8 to 16 boats fishing groundfish and crab. If a plant processes pollock, they usually have a fleet of 4 to 10 trawlers, and more often 8 to 10. Most plants also have 6 to 10 fixed-gear vessels in their fleet. Most of the fixed gear boats are pot boats fishing for Pacific cod and/or tanner crab. There is a small fleet which fishes for Dungeness crab as well. Fleet sizes are smaller now than they were when shellfish was a larger part of production. Prior to the implementation of the AFA in the Bering Sea, we were told that the GOA pollock (and flatfish) fleet tended to cooperate in an effort to balance deliveries to maintain high levels of production. This was a somewhat unique relationship to develop in an open access fishery, but was a form of industry-developed "rationalization" to counter some of the inherent inefficiencies of a high volume/low value fishery with excess capacity. Ideally, the plants want just the right amount of boats to keep production lines busy all of the time, but with a trawl fleet's capacity to catch groundfish, its harvest can easily exceed its processor's capacity. After the implementation of AFA in the Bering Sea, Kodiak processors have reported that this arrangement is, in essence, no longer in effect. With the anticipation of eventual pollock (and other groundfish) rationalization in the GOA, a "race for history" in the GOA has resulted, with at least one new processing entrant and a host of wasteful and inefficient practices (see processing discussion below). The exchange of product between fishermen and processors continues to be largely dependant upon what kind of relationship the boat operator has with the plant. According to one plant staffer, when a fisherman comes to talk to a processor, he has several main concerns. He wants to know how he's going to get in to make deliveries and if he is going to be able to deliver all the fish that he can catch. He does not want to have to wait to deliver fish because the processor has too many other boats delivering as well. A reliance on flexibility and adaptability in the fishing industry has caused boats to become very good at converting from one gear type to another, if they have the gear available. In the mid-1980s this did not happen frequently, but it is easier and more common now (subject to license limitation and other management measures). While boats may switch from one gear-type to another, operators usually deliver to the same processor. If a new operator comes aboard, the vessel may or may not change delivery sites, depending on the established relationships of the vessel owner/operator to processor. Within the trawl fleet, there are conversions too. There is a switch in nets for midwater or pelagic trawling to bottom trawling when going from pollock to cod. Almost everybody who trawls has both types of nets. Medium-sized and the small trawlers (usually those less than 70 feet in length) will make a conversion as soon as tanner season is closed, but the bigger Kodiak trawlers, those in the 80-120-foot range, will usually leave their trawl gear on and not make any conversions, unless they are going tendering for salmon or herring. It wasn't that long ago that they could trawl the better part of the year, so a number of them sold their pots and abandoned the fixed-gear fishery. Also, The Kodiak area tanner quota has been so small in recent years that the bigger boats can't justify going out. Generally speaking, fishermen stay with one company although there is no formal (written) contract to bind this relationship. Boats will usually try to set up some sort of a market before they leave the dock, although that depends, somewhat, on who's operating the boat and what kind of relationship he has with the plant. Often a plant will help find a market for a load it cannot use from one of its "regular" boats, especially for a high volume/low value species like pollock, or one that requires more time to process, such as flatfish. Shore plants also provide certain services as inducement to do business. In general, the production capacity in Kodiak to process fish far exceeds the amount of product currently available, so all the processors in town are in competition with each other for available product. As a result, things like being able to provide a tendering contract serve as incentives for fishermen to do business with a certain plant. Providing gear storage for fishermen is an incentive. Providing a line of credit – if a fisherman's short on funds and needs to buy gear or equipment – is another inducement the local processors sometimes offer to a fisherman. For some vessel operators, these tendering contracts are not only lucrative, but they become an important part of the total yearly income for vessels. Consequently, maintaining the handshake agreement to deliver groundfish when the processors need it most can be rewarded with a tendering contract that is important to the fishermen. Most of the Kodiak CV fleet is overwhelmingly GOA-oriented. While Kodiak CVs have more of a presence in the BSAI pollock fishery than for the other species (in terms of pounds harvested and dollars earned), the GOA is still clearly where most Kodiak boats fish. It is this orientation, and their position as harvesters of the GOA, that Kodiak fishermen wish to protect, and which they fear may be adversely affected by the changes in the fishery associated with ongoing adaptations to AFA related management. ## **Processing** In early 2000, there were six or seven (one was very new to Kodiak and was not available to provide information) plants processing groundfish in Kodiak. Interviews conducted in 2001 confirmed that seven plants processed groundfish, and that the new entrant was actively competing for all species. Other non-groundfish processors also exist. While capable of continuously processing large volumes, actual production, of course, varies during the year. Plants will add a shift, hire additional employees, and maximize processing and freezing capabilities during various seasons and season overlaps; various species require separate processing lines, machinery, and crews. At other times, especially during the later months of the year, the plants have little, if anything, to process, so they must layoff employees and attempt to minimize their overhead costs. Tables 2.1-10 and 2.1-11 show the aggregated volume and value, respectively, of the species processed in Kodiak by year for the period 1993-2000. With the exception of
salmon, which is processed at several different locations within the KIB, nearly all of this activity takes place within the City of Kodiak. Table 2.1-10. Volume of Groundfish Processed by Kodiak Shoreplants, by Species Group and Year, 1993-2000 | Species | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | |--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | Salmon | 105,954,109 | 42,512,087 | 150,212,021 | 38,480,944 | 47,096,755 | 85,182,682 | 63,097,929 | 60,096,447 | | Halibut | 9,886,361 | 8,959,621 | 7,345,008 | 7,396,190 | 10,673,472 | 8,398,551 | 8,269,475 | See Note | | Crab | 5,110,307 | 2,863,187 | 1,832,762 | 1,675,086 | 1,164,703 | 1,148,083 | 1,284,728 | 2,504,560 | | Herring | 8,886,771 | 5,845,320 | 4,998,580 | 5,868,669 | 5,336,494 | 2,482,571 | 1,985,822 | 2,080,860 | | Other Non-GF | 106,458 | 384,948 | 168,940 | 206,174 | 175,448 | 181,668 | 137,575 | 116,912 | | Pollock | 155,412,622 | 163,440,241 | 65,393,556 | 45,996,042 | 83,781,584 | 164,936,160 | 129,788,161 | 106,386,467 | | Other GF | 75,932,965 | 57,408,356 | 92,397,635 | 90,887,954 | 113,031,829 | 105,863,668 | 112,819,856 | 114,519,388 | | Total | 361,289,593 | 281,413,760 | 322,348,502 | 190,511,059 | 261,260,285 | 368,193,383 | 317,383,546 | 285,704,634 | Note: Halibut numbers not available for 2000 Source: State of Alaska Fish Ticket information supplied by NPFMC staff Table 2.1-11. Value of Groundfish Processed by Kodiak Shoreplants, by Species Group and Year, 1993-2000 | Species | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | |--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | Salmon | \$30,919,937 | \$19,837,476 | \$41,353,791 | \$21,319,667 | \$16,552,661 | \$26,327,348 | \$28,587,045 | \$18,448,920 | | Halibut | \$11,705,472 | \$16,874,425 | \$14,228,126 | \$16,144,982 | \$22,115,588 | \$10,254,625 | \$17,374,278 | See Note | | Crab | \$8,840,233 | \$7,149,258 | \$4,124,565 | \$3,463,420 | \$2,775,965 | \$1,704,518 | \$4,414,024 | \$7,026,046 | | Herring | \$2,583,290 | \$1,614,485 | \$2,815,598 | \$4,595,484 | \$941,584 | \$517,132 | \$608,933 | \$566,940 | | Other Non-GF | \$83,036 | \$415,673 | \$143,154 | \$246,052 | \$193,067 | \$190,220 | \$146,081 | \$174,606 | | Pollock | \$11,501,119 | \$12,625,509 | \$6,670,763 | \$4,369,377 | \$8,625,741 | \$11,190,308 | \$12,311,467 | \$12,255,024 | | Other GF | \$18,421,120 | \$17,180,178 | \$25,630,081 | \$24,708,464 | \$28,861,917 | \$21,660,833 | \$32,556,598 | \$28,857,786 | | Total | \$84,054,207 | \$75,697,004 | \$94,966,078 | \$74,847,446 | \$80,066,523 | \$71,844,984 | \$95,998,426 | \$67,329,322 | Note: Halibut Numbers are not available for 2000. Source: State of Alaska Fish Ticket information supplied by NPFMC staff. In the words of one long-time Kodiak fisherman, "Our key is to be able to diversify, but it is still tough to make it." This ability to diversify has become paramount to both the fishermen and the processors of Kodiak. Shore-based plants have added crews, space, freezers, equipment, and searched for new markets as fishermen have been seeking, entering, and participating in pulse fisheries that feature wildly variable deliveries. Occasionally when open fisheries are exploited by new entrants, new products emerge. While this includes previously unexploited resources such as sea cucumbers or snails, it also includes variations of existing resources. Pacific cod harvested in pot gear is such an example. Processors differ in the degree to which they actually do diversify their operations, but all those plants which process groundfish agree that it is essential for their plants. It is the highest volume component and provides essential employment for their work crews. Without groundfish these plants could not provide enough work to support their crews as Kodiak residents. Several plant managers made the same point about the other species they processed as well, although groundfish was perhaps considered a fundamental base of operations (up to 80 percent of most operations). Similarly, most processors consider their plant as only one component of an integrated system that requires a healthy harvesting sector, a stable and reliable processing labor force and an efficient plant, and capable management and adequate financial backing. The general sector description contained in IAI 1994 is still generally valid, with a few caveats. Less halibut is delivered and processed in Kodiak than in previous years, as one result of the IFQ system has been to reduce the processors margin on halibut to very little. Harvesters can receive a higher price in Homer or Seward than in Kodiak, and both of those ports receive more halibut than does Kodiak. Most processors are also very uncertain as to how they will meet their future labor requirements. At present most retain a "core" crew of Kodiak residents, which they supplement as necessary with additional resident labor, and transient labor housed in a bunkhouse for peak demand periods. Processors seldom wish to bring labor in for any period shorter than the summer, due to the need to train and house such labor, but at least one plant was forced to do so the last couple of years. They constructed a forty-person bunkhouse to accommodate them. Other plants that are part of companies with several processing facilities will transfer labor from one to another as labor needs change in the various locations. Labor costs are reported to have increased, due to the strong national economy as well as the increase in locally available entry-level jobs in the retail and service sectors. Plant managers also report that many fewer college students approach them (either remotely or by simply appearing in Kodiak) than in years past. ## Support Services The full spectrum of services for the fishing industry is present in Kodiak, as described in detail in IAI 1991. Support services include a wide range of companies, including such diverse services as accounting and bookkeeping, banking, construction and engineering, diesel sales and service, electrical and electronics services, freight forwarding, hydraulic services, logistical support, marine pilots/tugs, maritime agencies, ship repair facilities (recently enlarged), stevedoring and shipping, and vehicle rentals, among others. There is no other community in the area with this type of development and capacity to support the GOA (and some Bering Sea) fisheries. The Port of Kodiak is home to Alaska's largest and most diverse fishing fleet. It has more than 600 boat slips and 3 commercial piers that can handle vessels up to 650 feet long. Kodiak is also a vital link in the regional transportation network. As the hub of the Gulf of Alaska container logistics system, Kodiak serves Southwestern Alaska communities with consumer goods and provides outbound access to world fish markets. LASH Marine Terminal, in Women's Bay, provides service to several freight carriers, freight forwarders and consolidators, construction contractors, and Kodiak's diverse fishing fleet. Regularly scheduled container ships operate between Kodiak and the Pacific Northwest, and between Kodiak and the Far East. Kodiak is a key link for Alaskan Coastal communities. No systematic information exists on how support services have been affected by changes in the local economy in general. However, as for other communities, certain less systematic indicators are available. The loss of population in the City of Kodiak relative to outlying regions may reflect a weakening economy. Interviews with such primary fisheries support services such as the boat yard and the hydraulics shops indicated that fishermen were deferring more regular maintenance, and even canceling upgrades that had been scheduled in the past but which now, in the light of adverse fishing conditions, do not appear to be prudent investments. Several such jobs were said to have been canceled the day after the Steller sea lion RPAs were announced. These operations also note that the number of their uncollected bills has increased. #### 3.0 WASHINGTON INLAND WATERS REGION There are a number of communities in the Washington Inland Waters region that have important links to the North Pacific groundfish fishery. However, none of these communities have the breadth and depth of ties found in the greater Seattle metropolitan area. NCR 1999 notes that the "Alaska groundfish and halibut fisheries conducted by Washington-based fleets are presently the most important engine of this region's fishing industry." They continue in their report to document how these fleets are, in fact, based mostly in the Port of Seattle. #### 3.1 SEATTLE NCR enumerates the Washington State-based fleet and describes the fisheries in which they participate. They divide the 2,800 total vessels into the 1,450 vessels distant water fleet (most of which clearly do not fish for groundfish) and the 1,350 vessels in the local fleet. They report that the distant water fleet accounts for 95 percent of the catch and revenue, compared to 5 percent for the local fleet. They do not specifically focus on individual fisheries (although some information is provided in terms of graphs and diagrams), but it is evident that a number of Alaskan fisheries contribute to this pattern – salmon, halibut, sablefish, herring, crab, and of course groundfish (NRC 1999:4, 50-76 with associated table). They also describe the currently dismal condition of local Washington State fisheries (NRC 1999:77-88, with associated tables). There is relatively little information which deals specifically with the Alaskan groundfish distant water fleet, or with those geographical areas of Seattle most identifiable with fishing and perhaps characterizable as "fishing communities." Past documents produced for the NPFMC have contained profiles of the Port of Seattle, Ballard, and
the Ballard/Interbay/Northend Manufacturing Center (BINMIC) planning area, as potential types of (or proxies for) Seattle "fishing communities." Information for these areas is abstracted from those documents and presented in the appropriate sections below. For the most part, no additional information relevant to the Alaskan groundfish fisheries has been developed for those areas since the earlier documents were produced. The current status of whatever recent information is available is discussed in the relevant section. #### **Overview: Greater Seattle Area** "Seattle" as used in this section refers to the greater Seattle metropolitan area, and is not confined to the port or municipality of Seattle, except where specifically noted. As is clear from a consideration of the individual sector profiles, Seattle, in one way or another, is engaged in all aspects of the North Pacific groundfish fishery. While Seattle itself is quite distant in geographic terms from the harvest areas of the fishery, it is the organizational center of much of the industrial activity that comprises the human components of this fishery. More accurately, specific industry sectors based in and/or linked to Seattle (or, in some cases, specific geographic subareas within Seattle), are "substantially engaged in" or "substantially dependent upon" the North Pacific groundfish fishery. What makes Seattle an analytic challenge, in terms of a socioeconomic assessment directly related to the Alaska groundfish fishery, is its scale and diversity. Seattle's relationship to the Alaska groundfish fishery is a paradox. When examined from a number of different perspectives, Seattle is arguably more involved in the Alaska groundfish fishery in general, and the Bering Sea pollock fishery in particular, than any other community. One example is the large absolute number of "Seattle" jobs within the Alaska groundfish fishery compared to all other communities, whether counted in terms of current residence, community of origin, or community of original hire - setting aside, for the moment, where the jobs are actually located. On the other hand, when examined from a comparative and relativistic perspective, it could be argued that the fishery is less important or vital for Seattle than for the other communities considered. Using the same example, the total number of Alaska groundfish fishery-related jobs in greater Seattle compared to the overall number of jobs in Seattle is quite small, in contrast with the same type of comparison for the much smaller Alaska coastal communities. The sheer size of Seattle dilutes the overall impact of the Alaska groundfish fishery jobs, whereas in Alaskan communities such jobs represent a much greater proportion of the total employment in the community setting aside, for the moment, the consideration of whether those jobs are filled by 'residents.' As is also clear from earlier compiled sector descriptions, while all sectors are tied to Seattle in one way or another, the magnitude and nature of these ties varies considerably between sectors. It is through these ties, and how they are manifested in Seattle, that the role of the community in the Alaska groundfish fishery can be seen. While it was possible, and desirable for analytic purposes, to include some brief community level description for a few of the Alaska coastal communities in this document to show the relative 'engagement' or 'dependence' on the fishery, for Seattle this type of comparison tends to understate the importance of the Alaska groundfish fishery for particular sectors or subareas, losing the importance of the fishery in the 'noise' of the greater Seattle area. The precise nature of the relationship between a given sector and the Seattle area varies from sector to sector, in terms of employment patterns, expenditure patterns, and concentration or localization in the Seattle area. While local experts and industry participants are well aware of these patterns, systematic quantitative information to describe these patterns was not available at the time of this study. We have used the limited information that is available and supplemented it with information garnered from field interviews to provide a community context characterization. There are (at least) two ways to approach a discussion of the localization of fishing activity in general, and Alaska groundfish fishery activity in particular, within the Seattle area. The focus could be on port activity and economic organization, or on a more general historical/geographical (neighborhood or community) focus centered around fishermen, fishing activities, and marine support businesses. The first has the advantage of being well-defined, but is totally industry focused, and fishing-related activities comprise only a small portion of total activity and are not an easily 'isolatable' component using existing information. The second, generally corresponding to the common identification of Ballard and its environs with Seattle's fishing community, would incorporate much more of the overall social organization of fishing activity, but is very difficult to define and characterize within an overall economic and social context as large as Seattle's. Either approach would be a huge task for which available information is limited. A compromise has been reached in this document by briefly discussing the Port of Seattle in regard to the Alaska groundfish fishery and a cursory history and characterization of Ballard within the context of greater Seattle. This section first overviews the fishery from the community context, and then focuses on fishery-related industrial areas. The conclusion includes a discussion of the issue from the perspective of the 'community side' of the links. ## The Seattle 'Geography' of the Alaska Groundfish Fishery In this section, locational issues are discussed with respect to the Seattle area and the Alaska groundfish fishery. Here, the discussion is divided into two components: the Port of Seattle and the community of Ballard. Each provides a different and useful perspective on the Seattle social/socioeconomic ties to the fishery. The Port of Seattle is one of the more obvious ways to discuss the localization of the fishing economy in Seattle and the concentration of potential socioeconomic impacts of fishery management upon Seattle. Ballard is another locally recognized and labeled area with a fishing identity. The characterization of neither is a straightforward task, but the first is much more possible than the second. There are practical limitations on the availability of data attributable specifically to the Alaska groundfish fishery. Further, the port is well defined as an institutional entity, whereas Ballard as a community is not. # The Port of Seattle Martin Associates (2000) provides an overall assessment of the economic impact of fishing activity based at Port of Seattle facilities. They conclude that such activity generates \$400 million in wages (direct, indirect, and induced), \$315 million in business revenues, \$42 million in local purchases, and \$48 million in state and local taxes. There is no way to desegregate the Alaskan distant water fleet from this overall impact, so the utility of the information for our purposes is limited. They do provide estimates for the annual expenditures in Seattle of the various fishing vessels home ported there, and as might be expected, those for the larger vessels, such as participate in the Alaskan groundfish fisheries, are the highest in terms of expenditures per vessel – \$250,000 for catcher trawlers, \$900,000 for factory trawlers, and \$1.7 million for motherships. Most of the vessels in these classes home ported in Seattle probably participate in the Alaskan groundfish fisheries, but also participate in other fisheries. There are also many vessels in the Seattle distant water fleet that do not participate in the Alaskan groundfish fisheries. The Port itself does not have information on moorage fees received and other such information readily available, but conversations with Port of Seattle officials has indicated that moorage fees from the Alaskan groundfish fleet have declined in the past two years for two principal reasons – there are fewer vessels (the retirement/scrapping of catcher processors) and vessels are spending more time at sea and less time in port. Both of these are directly attributable to AFA. While it would appear to be a negative effect, this was in fact explained as a positive indicator for the economy of the region as a whole, as a smaller number of profitable vessels is more of an economic driver than is a larger number of marginally viable vessels. The "loss" of Port of Seattle moorage fees is merely one of the more noticeable effects of this change, but not necessarily one of the more significant ones. The Port of Seattle is separate from the Municipality of Seattle and is an economically self-supporting entity. Besides its direct revenues, it receives 1 percent of the property tax collected in King County, but with a cap on funding not to exceed \$33 million a year. In turn, all port revenues are charged a 12.4 percent tax, which is split between the city of Seattle and the state of Washington (in lieu of property tax). The Port's charge is the development of infrastructure that will support local and regional economic activities, especially in cases where the rate of return on investment in that infrastructure may be too low (although still positive) for the private investor. Such development contributes to the overall economy of the region through synergistic and multiplier effects. The Port of Seattle includes not only marine facilities but the airport as well. The port publishes various reports on their activities, but most are either too general or far too specific for the purposes of this study. The Marine Division of the port tracks economic activity by general service area - container terminal, cargo piers
and industrial properties, central waterfront piers and property, warehouse and distribution operations, Shishole Bay Marina (recreational moorage), and Fishermen's Terminal Pier and property. None of this information is organized so that expenses and revenues attributable to fishing activity (let alone specific fisheries such as the Alaska groundfish fishery) can be aggregated and assessed - although projects now underway will, in the future, provide such information to a greater degree than at present. Given this lack of breakout documentation, most of the information on the nature and magnitude of the importance of the Alaska groundfish fishery for the Port of Seattle came from talks with the Director of Marine Operations for the port. The Port's marine facilities occupy an extensive area, but can generally be characterized as the Ship Canal-Elliott Bay areas. The Director of Marine Operations estimated that Alaska-related fishing activity generates port revenues of \$1 million to \$2 million a year. Facilities, and the degree to which they are connected with fishery activities, were identified as follows: - Fishermen's Terminal (Ship Canal) an estimated 10 percent of its revenues (roughly \$2 million for all fisheries per year) were judged to result from catcher processor operations and an additional 10 percent from catcher vessel activity associated with Alaska fisheries (not just groundfish); - Pier and Terminal 91 (North Elliott Bay) used extensively by catcher processor fleet and provides the bulk of the Port's revenue derived from the Alaska groundfish fishery, through moorage and other fees. This facility also caters to ferries, a tug and barge company, an auto importer, apple exports, and cold storage facilities; - Central waterfront (mid-Elliott Bay) piers –not so fishery related, although they are sometimes used by larger vessels (Pier 48, Pier 66, Pier 69); - Pier 25 (East Duwamish Waterway, south Elliott Bay) permanent moorage for one of the mothership operations, but also used for catcher processor offloading, has cold storage facilities to hold product for transhipping, and a small surimi plant is located there; - South end in general (Duwamish manufacturing and industrial center) has some fisheries-related activities (such as cold storage facilities) but is more oriented to cargo operations and other industrial activities. The summary conclusion for port-focused analysis is that fishing-related activities take place throughout the Port, but are concentrated in the Fishermen's Terminal and Pier 90/91 areas. Of primary importance for fishing activity, and especially for larger vessels, is the availability of suitable moorage. Much of this moorage is supplied by the port, in an aggressive response to the demand from the fishing fleet. The initial development of Fishermen's Terminal in the 1980s was because of the perceived need for more moorage for larger vessels involved in the distant water fisheries. The current redevelopment of Fishermen's Terminal will likely increase this emphasis through the conversion of smaller moorage stalls to facilities more suitable for vessels 50 feet and longer (NRC 1999). This is in response to the drastic downturn in the economic viability of the local fishing fleet, especially the local salmon fleet which had been historically based at Fishermen's Terminal, and the increasing importance of Alaskan distant water fisheries for Seattle-based boats. These vessels tend to be 50 feet in length or more. ### Ballard When looked at on a neighborhood basis, one of more obvious foci of the distant water fishery in the greater Seattle area is the community of Ballard. Today the term 'Ballard' represents a loosely defined geographical neighborhood of northwest Seattle. There is no geographically standard area for which various types of comparable information exists. Nonetheless, the area does have a geographical identity in peoples' minds and, together with Magnolia and Queen Anne, has its own yellow pages telephone directory (published by the Ballard and Magnolia Chambers of Commerce). The following brief section is based predominately on information from the Ballard Chamber of Commerce (1998), Reinartz (1988a, 1988b, 1988c, 1988d), Hennig and Tripp (1988), and McRae (1988). Fishermen's Terminal on Salmon Bay is recognized as the home of the Pacific fishing fleet and has been characterized as the West Coast's 'premier home port.' Fishermen's Terminal (Salmon Bay Terminal) in turn has often been identified with Ballard - formerly a separate city (incorporated 1890) annexed by Seattle in 1907. Until the construction of the Chittenden Locks and the Lake Washington Ship Canal, opened in 1917, Salmon Bay Terminal was confined to relatively small vessels, but was the focus of a developing fishing fleet. Once the area was platted and incorporated it quickly attracted settlers and industries desiring or dependent upon access to Puget Sound. The timber industry was the first to develop, due to the need to clear land as well as the value of the timber that was available. By the end of the 1890s Ballard was a well established community with the world's largest shingle manufacturing industry, as well as developing boat building and fishing industries. By 1900 Ballard was the largest area of concentrated employment north of San Francisco. Ballard effectively blocked the expansion of Seattle to the north, and court decisions had given Seattle control over Ballard's fresh water supply, with the result that Ballard became part of Seattle in 1907. At that time the community had 17 shingle mills, 3 banks, 3 saw mills, 3 iron foundries, 3 shipyards, and approximately 300 wholesale and retail establishments. The Scandinavian identity of Ballard developed at or somewhat before this time. In 1910, first and second generation Scandinavian-Americans accounted for 34 percent of Ballard's population, and almost half of Ballard's population was foreign-born. Currently, less than 12 percent of the population is of Scandinavian descent, but the cultural association remains pervasive. Ballard's economy continued to develop and diversify, but remained fundamentally dependent on natural resources, and especially timber and fishing. In 1930 the *Seattle Weekly News* reported that 200 of the 300 schooners of the North Pacific halibut fleet were home ported in Ballard, demonstrating not only the centrality of Ballard but the long-term importance of distant water fisheries to Seattle fishermen. In 1936 the Port of Seattle built a new wharf at the Salmon Bay terminal, and in 1937 a large net and gear warehouse was scheduled for construction there. Over the years, Seattle-based vessels were central to the evolution of a number of North Pacific fisheries. Thus in some ways Ballard is considered a 'fishing community within' Seattle. While this has historically been the case, when examined with specific respect to the Alaska groundfish fishery, the area cannot cleanly be considered a 'village within a city.' While there is a concentration of multigenerational fishing families within the area, the 'industrialization' of the Alaska groundfish fishery has tended to disperse the ties and relationships of the fishery. While support service businesses remain localized to a degree (as discussed in another section below), there would not appear to be a continuity of residential location that is applicable to the Alaska groundfish fishery that is consistent with, for example, the historic halibut fishery. This is due to the many changes within the cluster of individual species fisheries that make up the overall Alaska groundfish fishery, and particularly the relatively recent development of one of the more dominant components of the fishery, the pollock fishery. In summary then, this 'community within the community' issue is not straightforward due to the complex nature of historical ties, continuity of fishing support sector location through time, changes in the technology and methods of fishing, and industrialization of the fishery. Clearly, Seattle represents a different pattern of co-location of residence and industry with respect to the Alaska groundfish fishery than that seen in the relevant Alaska communities. #### General Community Links The focus of the analysis in this section is the contribution of the Alaska groundfish fishery to Seattle. This section will examine the issue from the 'other side of the equation' - from the community 'side' of the sector-community links (and on a topical rather than a geographic focus). Unfortunately, most of the information available does not facilitate focusing on this issue with a fine resolution. Different sources address different partial aspects of this comprehensive question. Some discuss different scales of detail - local versus distant fisheries, groundfish versus other fisheries (crab, salmon, and so on), or fishing as a whole versus other maritime activity (shipping, for example). Some discuss different components of commercial fishing activity - harvest versus production, or one particular type of operation versus all others. Some concentrated on more confined, or more broadly regional, geographical areas. By collecting some of this material and piecing it together, however, some sort of understanding of the overall contribution of commercial fishing to Seattle should be possible. Natural Resource Consultants (NRC 1986, 1999) have compiled quite comprehensive accounts of commercial fishing activity by the Seattle and Washington State fleet. They provide a brief historical narrative on the development of the various fisheries and then a more detailed summary of the status of fish stocks and historical harvest information. In 1986, the estimated ex-vessel value of the grand total of all seafood taken from local waters by Washington's local fleet was about \$93 million (NRC 1986:18,19). Distant water fisheries, primarily in the Gulf of Alaska and the Bering Sea,
yielded an estimated grand total of \$290 million by 1,371 vessels with an aggregate crew of 6,088 (NRC 1986:28,33). The joint- venture fleet accounted for about \$80 million (ex-vessel) of this, with about 81 vessels and 405 crew, with an additional 11 catcher processors accounting for another \$25 million (ex-vessel) and about 330 jobs. In terms of weight or volume, 92 percent of the seafood harvested by Washington fishermen came from Alaskan waters, and only 7 percent from local waters. In terms of ex-vessel value, the Alaskan harvest was worth \$283 million and local harvest \$110 million (and other harvest \$8 million). None of these general statements has changed to any appreciable degree in 1998/99. Alaskan distant waters fisheries still provide 95 percent of the harvest for the Washington state fishing fleet (NRC 1999). Most of the Alaskan catch was processed to some extent in Alaska by a processor based in Seattle (mobile facilities, or on shore facilities owned by Seattle-based entities). NCR states that there were about 130 seafood processing/wholesaling and 33 wholesale/cold storage companies in Washington in 1985, operating 250 primary processing and wholesale plants in Washington and 120 shore based or at sea in Alaska. Washington processing employment was 4,000 seasonally and in Alaska was 8,000, with half coming from Washington (NCR 1986:35-39). A similar NRC study in 1988 found that Washington fishermen harvested about 80 percent (ex-vessel value) of their catch in distant waters, with 98 percent of that coming from Alaskan waters. About 72 Washington state vessels participated in the joint venture trawl fishery, directly employing about 360 people. There were also 43 catcher processors employing about 2,200 people, and 26 shore-based trawlers, employing about 130 people. NRC's summary of the contribution of commercial fishing to Washington State's economy in 1988 is shown in Table 3.1-1. Local water harvest and processing accounted for about 19 percent of this, distant water fisheries and processing about 57 percent, and other processing activities by Washington companies for about 24 percent. Of the estimated 36,608 FTEs associated with this economic activity, 39 percent were attributed to the distant water fishing fleet and 40 percent to out-of-Washington-state processing. The \$1.794 billion of direct and indirect benefits associated with the activities of the distant water fleet was also estimated to generate an additional \$795 million of induced benefits. Similar numbers are difficult to generate from their 1999 report, which was written with a different focus, but the general relative relationships between the value of various fisheries for the fleet should remain much the same (except perhaps for crab, which may have declined in terms of economic return). Table 3.1-1. Estimated Volume and Value of Washington Distant Water Commercial Fish Harvest, 1985 and 1988 | | Harvest Volume
(000 mt) | | Harvest Value (million
\$) | | Wholesale Value
(million \$) | | |-------------------------------|----------------------------|--------|-------------------------------|-------|---------------------------------|--------| | Fishery | 1985 | 1988 | 1985 | 1988 | 1985 | 1988 | | Salmon | 80.3 | 66.8 | 106.1 | 240.0 | 238.0 | 525.6 | | King and Tanner Crab | 26.4 | 51.7 | 42.2 | 129.4 | 54.9 | 191.5 | | Longline Halibut and Blackcod | 12.1 | 19.8 | 20.9 | 40.7 | 34.8 | 63.1 | | JV Trawl | 720.8 | 802.8 | 78.3 | 120.4 | 78.3 | 120.4 | | Catcher Processor | 111.6 | 546.0 | 24.6 | 103.7 | 61.6 | 334.1 | | Roe Herring | 12.6 | 5.9 | 8.5 | 5.9 | 18.7 | 10.8 | | TOTAL | 963.8 | 1493.0 | 280.6 | 640.1 | 486.3 | 1245.5 | Note: Shore-based trawl landings are not included. Dungeness crab landings have been excluded. Volume and value estimates for salmon landings may be as much as 5 percent too high, but are retained for consistency with earlier work. Source: NRC 1988:10 Table 3.1-2 provides summary information on economic contributions of local and distant water landings. Table 3.1-2. Total Economic Contribution to the Washington State Commercial Fishing Industry in 1988 | | (Millions of \$ to Was | hington Econor | ny) | |---|---------------------------|----------------|-------| | Locally landed | Landed Value | 137 | 269 | | | Value added by processing | 171 | 320 | | Subtotal | | 308 | 589 | | Distant Water | Landed Value | 639 | 1,257 | | | Value added by processing | 288 | 537 | | Subtotal | | 927 | 1,794 | | Non-State Landings: Washington State share of value added | | 405 | 756 | | TOTAL | | 1,640 | 3,139 | Source: NRC 1988:16 Turning to relatively more recent data, Chase and Pascall (1996) focus on the importance of Alaska as a market for Seattle region (Puget Sound) produced goods and services. They do so by identifying particular industrial sectors that generate the bulk of these economic impacts, but they do not locate these industrial sectors in terms of particular geographic locations within the region. In their discussion of the fisheries sector, Chase and Pascall indicate that only a fraction of the regional economy is based on fishing and seafood processing industries, but that these industry sectors are concentrated in several communities and rely heavily on North Pacific (Alaskan) resources. The communities that they single out are Bellingham, Anacortes, and the Ballard neighborhood of Seattle. They say that Seattle is the major base for vessels for various fisheries – groundfish (catcher vessels, catcher processors, motherships), halibut, crab, salmon, and others. There are numerous secondary processing plants in the region, and about 60 percent of the seafood harvested and shipped south for processing moves through the Port of Tacoma (Chase and Pascall 1996:23). The relative value of Alaskan groundfish (cod, pollock, sablefish, flounder, and other bottom fish aggregated together) for the Seattle fleet varies from year to year, but in 1994 was about 17 percent of the ex-vessel value of the Alaska/North Pacific commercial fishing harvest (Chase and Pascall 1996:26), which represented about 75 percent by harvest value, and 92 percent by weight, of all fish harvested by the Puget Sound fishing fleet (Chase and Pascall 1996:23 - citing ADF&G, NPFMC, NMFS). Other relatively recent work (Martin O'Connell Associates 1994) indicates the wide range of activities that the Port of Seattle supports and the web of support services which commercial fishing helps support, but provides no measure of the contribution of the Alaska groundfish fishery to this support. Fishing activities are included in this study only to the extent that they are reflected in activities at Fishermen's Terminal. This may reflect some Bering Sea and Gulf of Alaska catcher vessel activity, but would greatly underestimate catcher processor, mothership, and secondary processing activities. By their estimation, fishing activity at Fishermen's Terminal in 1993 generated 4007 direct jobs (the majority of them crew positions), earning an average of \$48,690 per direct job (total \$195 million). Also, an additional 2,765 induced and indirect jobs were created. Fishing businesses also expended \$145 million on local purchases of goods and services (Martin O'Connell Associates 1994:45-49). Again, this does not indicate the contribution of the Alaska groundfish fishery so much as it establishes that the local fishing/processing economy is densely developed. Also, if the estimates or models of vessel expenditures developed for operations using Fishermen's Terminal can be extrapolated to other vessels based in Seattle, an estimate of the contribution of the Alaska groundfish fishery may be possible. The estimate for annual expenditures in Seattle for a factory trawler using Fishermen's Terminal was about \$2 million in 1993. Miller et al. (1994) indicate that for a model surimi vessel, 1993 operating expenditures other than for crew had been in the range of \$10 million annually. These would have been distributed among all the places where the vessel fished, as well as its Seattle (or Tacoma) home port, but still indicates that there is a large contribution to the regional economy from the presence of these vessels. Each vessel also represents more than 100 direct jobs and a payroll of \$3 to \$5 million (Miller et al. 1994:1,23). A summary profile of the Puget Sound maritime industry, which includes commercial fishing, is included in Economic Development Council of Seattle and King County 1995 (Appendix A:39-49). Pertinent information has been abstracted here. The list of included businesses is quite long and is a good indicator of how far indirect benefits can spread: ... cargo shipping, tugs and barges, commercial fishing and supply; sip and boat building; cruise ships; vessel design and repair; fueling; moorage; the fabrication and sale of marine gear such as electronics; refrigeration, hydraulics, and propulsion equipment; the operation of marinas, dry docks and boat yards; services provided by customs and insurance brokers and shipping agents; and maritime professional services including admittedly law, marine surveying and naval architecture (Appendix A:39). It was estimated that in 1992 there were 30,000 jobs in the maritime sector within the four-county region, including: 10,000 in commercial fishing, 7,000 in fish processing, 5,000 in marine recreation, and 3,900 in boat building and repair. Average wages were estimated at \$24,000 for fish processors; \$32,000 for ship and boat building and repair; and \$50,000 to \$80,000 for commercial fishing. The sector is one noted for providing entry-level positions for those with limited education and job skills, so that they can learn a highwage job. Each job in this sector creates or supports one to two other jobs in the regional economy, and each dollar of sector output generates about one additional dollar in output from the
rest of the economy. Seattle offers the maritime sector, and the distant water fleet in particular, a "critical mass" of businesses that allows vessel owners and other buyers a competitive choice of goods and services. The same is true to a lesser extent of other regional ports, such as Tacoma. Efficient land transportation systems are also critical, and Seattle has good rail and truck linkages (and the Port of Seattle is working to improve them). Although the maritime sector is an important one for the region, some of its components are currently experiencing some difficult times. Other regional communities (Anacortes, Bellingham, Port Townsend) as well as locations in Alaska (closer to the distant fishing waters) are working to develop port facilities to lure vessels so that they may gain the economic benefits of the associated support and supply business. Common sorts of projects are the improvement of shoreside access, building additional moorage, or work and storage capacity. Natural Resource Consultants revised some of their earlier work and added additional analysis focused specifically on the contributions of inshore Washington State (but also Alaska) processing plants to the Washington State economy (NRC nd, 1997). The Washington inshore seafood processing industry purchased \$859.5 million of raw material in 1991, \$720.1 million from Alaska and \$139.4 million from Washington waters. Salmon accounted for 46 percent of the total value of these purchases, while groundfish accounted for 19 percent. The total finished product from all this raw material was worth \$2.1 billion (\$1.8 billion from the Alaskan raw material). Salmon accounted for \$780 million of the final product's value, while groundfish accounted for \$482 million. "... inshore processors operating in Alaska and Washington account for more than 50 percent of the value of U.S. seafood exports" (NRC nd:4). Expenditure patterns for Washington (and Washington-owned Alaskan) inshore plants were modeled in these NRC documents. Inshore plants expenditures average 46 percent for their raw materials (fish and shellfish), 16 percent for wages and benefits, 9 percent for processing materials, and 7 percent for tendering and other transportation costs. About 55 percent of these expenditures were made in Washington, 43 percent in Alaska, and 2 percent from other states. This is stated to include fish and shellfish purchased in Alaska from fishermen who home port in Washington (NRC nd:9), and economic benefits were produced from these expenditures in direct proportion to their magnitude. The estimated total economic output from primary and secondary processing activities for all seafood to the Washington state economy in 1991 was calculated to be \$1.865 billion. This was the result of three main factors: - A substantial portion of expenditures for raw material (fish) in Alaska are made to fishermen whose home ports are in Washington. - The majority of administrative and sales functions of processing companies are carried out in Washington. - A major portion of support industries (equipment and packaging manufacturing) are located in Washington. That is also the order of their significance in terms of contributions to economic benefits. In addition, a substantial amount of secondary processing takes place in Washington. This produces additional benefits to that of primary processing of about 3,635 FTEs, earnings of \$81 million, and indirect benefits of \$287 million. The report also points out that the Washington inshore processing sector is the second highest value food product contributor to the Washington state economy, being topped only by the apple. NRC updated this report in 1997 and reached essentially the same conclusions. In 1996 the Washington inshore seafood industry generated 32,837 FTEs (21,308 in Washington and 11,529 in Alaska) and \$791 million of earnings impacts (\$532 million in Washington and \$259 million in Alaska). In terms of economic output, it contributed \$1.9 billion to the Washington state economy and \$1.2 billion to the state of Alaska economy (NRC 1997). As noted earlier, these data underscore the interrelatedness of the economies of Alaska and Washington and, as has been seen through the sector profiles and the ties to particular communities, the ties between Seattle and specific Alaska communities. Companies based in Washington depend on Alaska fisheries for the great bulk of the raw materials processed in Washington, and residents of both states harvest Bering Sea resources. Also, as noted earlier, the corporate offices and sales outlets of the processing companies are located in Washington, as are most of the suppliers and support services for the industry. The following section looks at the localization of the fishing industry within the waterfront area of Seattle. ### The Ballard Interbay Northend Manufacturing Industrial Center With previous discussion as a regional context, an attempt to more closely associate a specific area of Seattle with commercial fishing (and other associated) activities now can be examined. One of the fundamental purposes for the establishment of the Ballard/Interbay/Northend Manufacturing and Industrial Center (BINMIC) Planning Committee was the recognition that this area provided a configuration of goods and services that supported the historical, industrial, and maritime character. At the same time, developmental regional dynamics are promoting changes within the BINMIC area which may threaten the continued vitality of its maritime orientation. Among other objectives, the BINMIC final plan states: The fishing and maritime industry depends upon the BINMIC as its primary Seattle home port. To maintain and preserve this vital sector of our economy, scarce waterfront industrial land shale be preserved for water-dependent industrial uses and adequate uplands parcels shall be provided to sufficiently accommodate marine-related services and industries (BINMIC Planning Committee 1998:6). Previous documents produced for the NPFMC have discussed the BINMIC area, and some of this information is abstracted below, for the sake of completeness. It is not vital to this discussion, however, as the BINMIC planning document has remained in the form in which it was "finalized" and the City of Seattle does not collect comparable time series measures for the BINMIC area. As previously noted, Ballard, in northwest Seattle, is commonly identified as the center of Seattle's fishing community. This may be true in an historical residential sense, but commercial fishing-related suppliers and offices are spread along both sides of Salmon Bay-Lake Washington Ship Canal, around Lake Union, along 15th Avenue West through Queen Anne, and then spread along the shores of Elliot Bay on both sides of Pier 91. Not surprisingly, this is also the rough outline of the formal BINMIC boundaries, which is bordered by the Ballard, Fremont, Queen Anne, Magnolia, and Interbay neighborhoods. It is defined so as to exclude most residential areas, but to include manufacturing, wholesale trade, and transportation-related businesses. It includes rail transportation, ocean and fresh-water freight facilities, fishing and tug terminals, moorage for commercial and recreational boats, warehouses, manufacturing and retail uses, and various port facilities (Terminal 86, Piers 90 and 91). The BINMIC "Economic Analysis" document (Economic Consulting Services 1997) uses much of the same information as was reviewed above, in combination with an economic characterization of the BINMIC area, to establish that certain economic activities are especially important for that area. One of these activities is commercial fishing - although again the connection to the Alaska groundfish fishery in particular is somewhat difficult to establish concretely. The BINMIC area is a relatively small one, but contributes disproportionately to the city and regional economy (Table 3.1-3). Again, those characteristics are part of what determined its borders. The BINMIC resident population is only 1,120 (1990 census), but there are 1,048 businesses in the area and 16,093 employees. The great majority of business firms are small - 85 percent have fewer than 26 employees, but accounted for only 30 percent of total BINMIC employment. Self-employed individuals (i.e. fishermen) are probably not included in these numbers. Employment by industry sector is displayed in Table 3.1-4. Table 3.1-3. Relationship of Estimated BINMIC Population and Employment to Local, Regional, and State Population and Employment | Area | 1990 Population | BINMIC as % of Total | 1994 Employment | BINMIC as % of Total | |------------------|-----------------|----------------------|-----------------|----------------------| | BINMIC | 1,120 | 100 | 16,093 | 100 | | City of Seattle | 516,259 | 0 | 490,632 | 3 | | King County | 1,507,319 | 0 | 912,038 | 2 | | Puget Sound | 2,748,895 | 0 | 1,363,226 | 1 | | Washington State | 4,866,692 | 0 | 2,212,594 | 1 | Note: Percent of total reflects BINMIC's share of each area's total population and employment Source: Economic Consulting Services 1997:14 Table 3.1-4. BINMIC Employment by Industry Sector | Industry Sector | Units | Employees | Percent of Total | |-----------------------------------|-------|-----------|------------------| | Agriculture, Forestry, & Fishing | 129 | 750 | 5 | | Mining & Construction | 83 | 1169 | 7 | | Manufacturing | 216 | 5322 | 33 | | Transportation & Utilities | 35 | 1608 | 10 | | Wholesale Trade | 178 | 2239 | 14 | | Retail Trade | 121 | 1606 | 10 | | Finance, Insurance, & Real Estate | 43 | 306 | 2 | | Services | 233 | 2604 | 16 | | Government | 10 | 489 | 3 | | TOTAL | 1048 | 16093 | 100 | Source: Economic Consulting Services 1997:29 An important indicator of the importance of commercial fishing and other maritime activities is the availability of commercial moorage. As of 1994, more than 50 percent of all commercial moorage
available in Puget Sound was located in Seattle, and of that, more than 50 percent was in the BINMIC area (representing 30 percent of all commercial moorage in the Puget Sound area). Thus, the BINMIC area is clearly important in terms of being an area where vessels (especially larger commercial vessels) are concentrated. The Port of Seattle has concluded that only the ports of Olympia and Tacoma at present provide a significant source of moorage in Puget Sound outside of Seattle. Port Angeles may build additional capacity at some point in the future. Olympia's facility was rebuilt in 1988. Some older moorage constructed of timber piling prior to 1950 is nearing the end of its useful life and will need to be replaced. On the other hand, it is expected that much of the private old timber moorage will not be replaced, so that overall moorage capacity will decline. In the Seattle area, there has also been a dynamic whereby commercial moorage had been converted to recreational moorage. Within the BINMIC area, recreational moorage within the UI Shoreline is prohibited altogether, because of the importance of commercial activity and the danger of interference from recreational moorage. The Port has concluded that it is unlikely that any new private commercial moorage will be developed (because of cost and regulatory regime) and is examining their options (Port of Seattle 1994). As previously mentioned, the Port is pursuing a program of repairing its facilities where economically feasible (when it can be fairly well assured of a steady tenant). The BINMIC area is fairly well "built out." The BINMIC area contains 971 acres, divided into 806 parcels with an average size of 1.043 acres, but a median size of .207 acres. Thus there are many small parcels. Public entities of one sort or another own 574.8 acres (59 percent). The Port of Seattle is the largest landowner with 166 acres, while the city has 109 acres. Private land holders own 396 acres, of which only 19.45 acres were classified as vacant - 19.27 acres in 81 parcels as vacant industrial land and .18 acres in 2 parcels as vacant commercial land. An additional 200.76 acres were classified as "underutilized," meaning that it had few buildings or other improvements on it. This classification does not mean that the land may not be in use in a fruitful way (for instance, storage of gear or other use that is not capital intensive). Economic Consulting Services (1997) lists 85 companies that have a processing presence in Washington state (Appendix C). Of these, over half (47) are located in Seattle, with many in the surrounding communities (Bellevue, Kirkland, Redmond). Of these 47, at least 18 are located within the BINMIC, and the rest are located very near the boundaries of the BINMIC. Some examples of fairly large fishing entities that are located within BINMIC (as well as elsewhere) are Trident Seafoods, Icicle Seafoods, Ocean Beauty Seafoods, Peter Pan, Alaska Fresh Seafood, and NorQuest Seafoods. All demonstrate some degree of integration of various fishing industry enterprises. The BINMIC area of Seattle displays the following characteristics which indicate its important economic roles: - it is a significant component of, and plays a vital role in, the greater Seattle economy; - it is integrated into local, regional, national, and multinational markets; - it is a key port for trade with Alaskan and the West Coast, Pacific, and Alaska fishing industries and the Alaskan fishery is especially significant; - Salmon Bay, Ship Canal, and Ballard function as a small port of its own, but also support fishing and a wide range of other maritime activities including recreation and tourist vessels and activities; and - it is, and has been, an area of concentration of businesses, corporations, organizations, institutions, and agencies that participate in, regulate, supply, service, administer, and finance the fishing industry. # Summary: Seattle and North Pacific/Groundfish Socioeconomic Issues As noted in the introduction to this section, Seattle is an analytic challenge, in terms of a socioeconomic description and a social impact assessment directly related to the Alaska groundfish fishery, because of its scale and diversity. Seattle is arguably more involved in the Alaska groundfish fishery than any other community, but from a comparative perspective, Seattle is arguably among the least involved of the communities considered. The sheer size of Seattle dilutes the overall impact of the Alaska groundfish fishery jobs and general economic contributions when viewed on a community scale, in contrast to Alaskan communities where such jobs and revenues are a much greater proportion of the total economic base of the community. This section has attempted to portray the complexities of the ties of the Alaska groundfish fishery to Seattle in terms of sectors, specific portions of the economy, and on a geographically localized basis. All of the Alaska groundfish fishery sectors are tied to Seattle in one way or another, although the magnitude and nature of these ties varies considerably between sectors. It is clear that Seattle, as a community is, from a number of different perspectives encompassing specific sector structures and geographically attributable industrial areas, engaged in and dependent upon the Alaska groundfish fishery. To avoid losing the importance of the fishery in the 'noise' of the greater Seattle area, the association will be described in terms of Alaska groundfish fishery industry sectors and their linkages to Seattle, as described in this section, rather than attempting an overall contextualization of the fishery and impact analysis within the metropolitan area. ## **Links to Specific Groundfishing Sectors** In addition to looking at port-focused and neighborhood-focused activities, a relevant way to examine the nature of Seattle's involvement with the Alaska groundfish fishery is to look at the nature of the links between Seattle as a community and the relevant individual sectors of the Alaska groundfish fishery. This type of information is specifically intended to provide a general level overview of dynamic relationships of Seattle to all of the relevant sectors, and discuss the nature and degree of variation between sectors. # **Inshore Processing** The Inshore/Offshore-3 analysis (NPFMC 1998) found that all of the larger floating processors with a continuity of participation in the Bering Sea pollock fishery during the 1990s were managed and operated out of Seattle. While moveable in theory, Alaska groundfish floating processors tend to operate in relatively fixed locations in Alaskan State waters, outside of incorporated city and organized Borough boundaries. Thus, they have minimal interaction with local Alaskan communities and can be characterized as true industrial enclaves. They employ relatively few Alaska residents, another potential measure of local community or at least state labor force interaction. This, along with the fact that these operations are supported out of the Seattle area (with some logistical support in Unalaska/Dutch Harbor, and marked reliance on air transportation links to that community), would appear to reinforce the overall ties of this subsector to Seattle as opposed to the Alaskan communities closer to their areas of operation. As noted in earlier NPFMC documents, while the larger shoreplants which process Alaska groundfish are located in Alaska, all have multi-level ties to Seattle. All are administered from corporate headquarters in Seattle, which is the center for corporate and financial services. Thus, Seattle is the community where business decisions are made, or at least deliberated, for the Alaska shore plants (setting aside, as for other sectors, the complicating issue of degrees foreign ownership that vary by entity). This distinction should not be carried too far, however, as plant managers resident in the communities clearly have a role in corporate decision making, and executives based in Seattle also spend time in the Alaskan communities where their plants are located. Nonetheless, the role of 'Seattle' in the decision-making process, and the profound influence that process has in the Alaska shoreplant communities, is well recognized in the communities themselves. In terms of the links between Seattle and the important inshore processing community of Unalaska/Dutch Harbor, specifically with the maturing of the fishing industry, the growth of local infrastructure and support services, and the overall changes in Unalaska/Dutch Harbor, the relationship between the communities has changed somewhat. It is no longer common to hear people express their recognition of the strong industry ties between Unalaska/Dutch Harbor and Seattle by saying that in some respects Unalaska is a 'suburb of Seattle,' as was not uncommon in the mid-1980s. The center-periphery relationship is perhaps more complex than ever for this sector. For the Bering Sea portion of the fishery, Seattle is the center of corporate operations; Unalaska/Dutch Harbor is the center of processing operations and the interdependencies are many and complex. A similar pattern applies to Kodiak for the Gulf of Alaska component of the fishery. Further, while there is some variation in this pattern with smaller inshore groundfish processors in other communities, plants in the other three of the top five Alaskan groundfish ports (Akutan, King Cove, and Sand Point) are all operated by firms managed out of Seattle. In addition to being a decision-making and important administrative support community for the shoreplants, Seattle is also the location of some direct employment associated with the shore plant companies. While administrative shore plant sector employment in Seattle consists of relatively few jobs compared with positions at the plants themselves, the Seattle component has a greater proportion of jobs within the upper compensation range. Physical plants for
secondary processing are located elsewhere in the Pacific Northwest, Alaska, other parts of the country, and overseas. Some have direct business operation connections with primary processors (both onshore and offshore). The day-to-day management of the labor force of shore plants in Unalaska/Dutch Harbor tends to consist of year-round community residents (though these individuals were initially recruited from elsewhere). Managers of other shore plants tend to maintain homes outside of Alaska (many in the Seattle area), even though most spend most of their time in Alaska and may well qualify as Alaskan residents. The bulk of the labor force for shore plants consists of the maintenance/support and the processing crews (although the two may well overlap). The former tends to be employed on a more year-round basis, and thus tends to be more of an Alaska resident labor force. The latter tends to have a higher turnover and, with a significant percentage of the workforce still coming from the PNW and the greater Seattle area in particular, employment ties to Seattle are still important for Bering Sea and Gulf of Alaska community-based operations. As discussed in the 1998 Inshore/Offshore-3 document (NPFMC 1998), for the inshore pollock processing sector as a whole in 1996, non-Alaskan employees accounted for approximately 80 percent of the total workforce, but this figure varies widely by plant, with the range encompassing less than 10 percent to almost 40 percent of the workforce being Alaska residents of any one operation. A similar pattern is assumed to hold for all large groundfish plants. While it is important to recall that there are significant differences between 'residence' and the location of jobs, as discussed in earlier documents, there are impacts derived from the physical location of jobs more or less independent of the formal residency status of the workforce. While specific break-outs are not available, based on interviews with plant managers, it may be safely assumed that the bulk of the non-Alaska jobs come from the PNW region, and a disproportional number of those from Washington State and the greater Seattle area. Interviews with processing personnel conducted for the 1994 SIA (IAI 1994) would indicate that a not insignificant portion of the wages paid to workers in Alaskan plants were used to help support extended families outside of the region. While quantitative data does not exist regarding this type of wage flow, it is one more indication (particularly given a general knowledge of the industry) of the ties between the shoreplants and Seattle (and the greater West Coast area). In terms of support services for the shore plants, Seattle would appear to play a similar role for the shoreplant sector as it does for several of the other sectors, in nature if not in relative magnitude. Shoreplants do purchase goods and services in their 'host communities' but this is highly variable by plant and community. Among the major plant sites, Unalaska/Dutch Harbor and Kodiak have the highest degree of development of local support services, but it is still the case for these communities that materials and supplies needed for the operation of the plants are not manufactured locally, and a great deal of these are shipped out of the Seattle area, given that Seattle is both the headquarters of the individual companies and the nearest major port in the Lower-48. In terms of expenditure patterns for the shore plant sector in relation to the Seattle area, there are several main areas to consider. First, the shore plants buy fish from the catcher vessel fleet and, as detailed in the sector profile for the catcher vessel fleet, the inshore delivering fleet is primarily based in Seattle and the Washington Inland Waters region. While there has been a considerable shift in recent years in ownership patterns with respect to shore plants as a sector, with processing entities coming to own and/or control a considerable percentage of their delivering fleets, interview data would suggest that there has not been a dramatic shift in employment patterns for crew members. That is, while the locus of ownership may have changed, the patterns of employment have not appeared to do so, with most of the crew members and skippers coming out of the Seattle and Washington Inland Waters region and Oregon coastal areas. This being the case, crew compensation as a function of shore plant expenditures for Alaska groundfish disproportionately accrue to Seattle and the Pacific Northwest as a region. Second, expenditures for support services would appear to be primarily directed toward the Seattle/Pacific Northwest area. Third, corporate finances would appear to flow through Seattle, so the community would derive economic benefits from these transactions. In short, shoreplant expenditures are important to Seattle when examined on a sector basis. The localization of such expenditures within Seattle, however, is less clear. In terms of fiscal impacts to Seattle, clearly the differences of scale between Seattle and the Alaska shoreplant communities make a great difference in relative significance of the sector. Beyond this, there are different types of fiscal inputs/taxation relationships between the companies and communities based on where the actual 'work' or 'industry' of processing takes place. In the shore plant communities themselves, the plants, as described in the Alaska communities discussion, provide a basic fiscal underpinning for local government in the form various business, property, sales, and fish taxes. Seattle, not being the 'industrial' center of the processing, has a different relationship to the industry. # **Motherships** Motherships, as a sector, have strong ties to the Seattle area. All three Bering Sea pollock mothership operations are headquartered in Seattle, and the motherships themselves are managed and supported principally out of Seattle. Hiring is done from Seattle and, while we have no statistical breakdown of the mothership labor force, many come from the Lower-48 and most are reportedly from the Pacific Northwest. All, and especially the mothership with a CDQ group partner and partial CDQ group ownership, have strong initiatives to hire Alaskans, and especially Alaskans from Western Alaska. Given that the operations are headquartered in Seattle, the community acts as a corporate center for this industry sector, in terms of corporate and financial services support. There are a few administrative/office positions for each company in Seattle, but these account for less than 10 percent of the workforce in every case, even at the low end of operational range staffing aboard the vessels. In terms of fiscal impacts to communities, like catcher processors, motherships are subject to the resource landing tax in Alaska, so they developed a different fiscal relationship to Alaska communities. Individual operations varied the location and number of offloads, so there was variability between operations in this regard, but motherships in general appeared to offload fewer times in Alaskan communities than did catcher processors. At least one was reported to sometimes take a product directly to Japan, and all reported taking their 'last load' to a non-Alaskan port. The catcher vessel fleet for motherships tends to have Seattle owners and to be maintained in the Seattle/Pacific northwest region. Some vessels have California or Alaska owners, or may have some connections with Oregon. Regardless of ownership or "home port" designation, many of these catcher vessels normally remain in Alaskan waters between the last pollock season of the year and the first pollock season of the following year, unless there is a compelling reason for them to go to Seattle. Those mothership catcher vessels with Pacific whiting permits have an incentive to go south after the first pollock season, and those from that region are most likely to have such permits. They will normally schedule maintenance calls in Seattle during this period. Mothership catcher vessels do participate in more fisheries than do motherships themselves itself, but Alaska groundfish (specifically pollock) is their most important fishery. Mothership labor forces are predominately Seattle-based. Offices are maintained in Seattle, one in conjunction with its pollock CDQ partner and its parent onshore processing company. Workforces range from 80 to 140 persons on the two smaller operations to 190 to 220 persons on the larger operation. An increasing number of these employees are reported to be from Western Alaska, especially on the CDQ partner vessel. The larger operation employs a crew of 40 to 60 people to maintain the vessel and thus work 6 to 7 months a year. Office staff work year-round, and the rest of the crew works only while the vessel is actively fishing or in transit (estimated at approximately 90 days). All mothership operations report using Seattle as their primary logistical base. That is, they will leave Seattle with as many of the supplies that they will need for the fishing season as possible. All mothership operations contrasted this with the pattern of their catcher vessel fleet, which obtains most of its logistical support from Alaskan ports. The mothership reportedly does not carry supplies for its catcher vessel fleet (citing lack of storage capacity aboard their vessels). Motherships have a limited number of opportunities to take on additional supplies in Alaskan ports, since they normally do not have many offloads in Alaskan ports. Linkages to Alaskan communities are thus mostly through the resource landing tax paid on offloaded product and the activities of their catcher vessel fleet. Most mothership community linkages are with Seattle. ### Catcher-Processor Sector Corporate management and operations of the catcher-processor fleet is concentrated in the Seattle and Puget Sound area, as is ownership. These vessels are typically not present in Alaska when not
working, although there have been a number of exceptions for ship work in Alaskan ports. Even these vessels for the most part use Seattle or Pacific Northwest facilities for regular maintenance and support. This pattern has been modified in recent years by the investment of five of the six CDQ groups in the offshore sector. These ownership shifts have affected some aspects of the operations of these vessels, but not the centralization of management and support services for them in Seattle. The sector industry association has established its headquarters in Alaska, and has made targeted hiring efforts in Anchorage as well as the CDQ regions, although employment continues to be predominately from Washington state. Catcher-processors harvest and process Alaska groundfish in Alaskan waters and, although Seattle based, have fiscal ties to Alaska through the payment of a resource landing tax on the product they offload in taxable jurisdiction areas. For example, as noted in the discussion of Alaskan communities, the resource landing tax is a significant source of income to the community of Unalaska/Dutch Harbor. Some catcher processors will land their last load in Seattle, since many must make the trip anyway, but this varies by operation, and depends on a number of variables such as ultimate market, shipping costs, timing with respect to participation in other fisheries, and so on. Those catcher processors which participate in other fisheries (after pollock) producing fillets may tend to land more of their total pollock production in Alaska. Catcher processor vessels are moored and maintained in the Seattle/Pacific Northwest area. The Port of Seattle has made a sizeable investment in renovating part of Pier 91, partly in response to the need of the largest catcher processor company for moorage and other workspace for its operations. The ability and desire of this company to sign a long-term lease enabled the Port of Seattle to finance these renovations, so there is a direct link seen between the Alaska groundfish fishery and port development. The Puget Sound area, and the Port of Seattle within the Puget Sound area, provides the majority of moorage available for the Alaska groundfish fishery fleet (and especially so for catcher processors). Hiring for employment within the fleet occurs both in Alaska and the Lower-48. Turnover varies from year-to-year and is highly dependent on levels of compensation. Some people make careers of working on catcher processors, while others treat it as a seasonal activity or a "stage of life" activity. The one group of employees that was readily identifiable were those Alaskans hired from western Alaskan villages, primarily by fishing operations with CDQ partnerships. At least a limited number of individuals have relocated to Seattle, based on catcher processor employment, although interview data would indicate that they maintain contacts with relatives and return to the village at frequent intervals. Management and the vessel maintenance labor force, to the degree that such work does not require work in a shipyard, is clearly concentrated in Seattle. Interview information from the 1998 Inshore/Offshore-3 SIA (NPFMC 1998), derived from contact with five companies with 27 vessels, supported this general picture. Most employees are from Washington or other western states, with Seattle being the major (or only) point of hire. For those operations with CDQ partners, this was generally modified by an effort to incorporate CDQ group residents into the fishing (and other) operations through entry level positions and intern training programs. Available information on expenditure patterns of the catcher processor fleet is fairly sketchy. Prior to the formation of co-ops, the catcher-processor sector fleet, on average, purchased 10 percent of its open-access pollock from the catcher vessel sector fleet, which is itself predominately Seattle based. Under the co-op system, however, there has been a fundamental change in this pattern, with additional catch capacity becoming much less important. Some drydock work has recently been done in Alaskan ports, specifically in Ketchikan, and in-season work also takes place in Alaska. Seattle is the only locale with a concentration of facilities that can provide these services for a large number of vessels, with the possibility for competitive bidding. Interviews with most firms for the 1998 Inshore/Offshore-3 SIA (NPFMC 1998) resulted largely in general level information; however the overall pattern was clear. Catcher processor operators consistently indicated that most expenditures were made in or through Seattle or the Puget Sound area - with in-season support from Alaskan sources as required. They were quick to point out that they needed to purchase large amounts of fuel in Unalaska/Dutch Harbor, paid a great amount of dock fees and resource landing taxes there, and in general provided a good deal of support for that community, both through fees and taxes and direct expenditures. At the same time, like all other businesses, their operations are managed to minimize expenses, in most cases entailing supplying the vessel as much as possible from Seattle. The community economic/fiscal links of the catcher/processor sector can be summarized by the overall dichotomy or comparison of (Seattle) financial, most maintenance, and initial supply costs as opposed to (Alaskan and especially Unalaska) in-season operational costs. The majority of the labor force is in some way linked to Washington State or the Pacific Northwest. Thus, in terms of absolute value, the sector expends a great deal more, to a much wider economic network, in Seattle than it does in Alaska. The difference in the scales of the economies in Seattle and Alaska (especially for the community of Unalaska/Dutch Harbor), however, make the catcher processor sector economically important in Alaska in general, and the community of Unalaska/Dutch Harbor in particular. While also important in Seattle, the overall community effects of changes in the operations of this sector are less because of the sheer size of the Seattle economy. There may be identifiable effects on subsections of Seattle's economy, such as the Port, shipyards, or other services concentrated in Ballard. The catcher-processor sector felt significant impacts as a result of AFA, but employment recruitment patterns have not changed a great deal from pre-AFA operations. Total employment has of course decreased, but those still working are working more hours and thus earning a higher yearly total than before. This, of course, does not minimize the impact on individuals and families of the loss of employment for an estimated 1,500 to 2,000 individuals as an early and direct result of AFA. #### Catcher Vessels Aside from the ownership-related ties already discussed, many of the larger class groundfish catcher vessels have other ties to the greater Seattle area. Patterns for smaller vessels are much more variable and Alaska focused, as shown in the ownership information previously discussed. Most of the vessels in the larger classes of catcher vessels will have overhauls and other major work done in Seattle (or an alternate port in Washington, or Portland, Readsport, or Newport in Oregon), but may make the trip only every two years if they do not usually participate in PNW coast fisheries on a regular basis. This is also a tendency which seems to accompany shore plant acquisition of more pollock-specialized catcher vessels. This, and the decreasing fishing opportunities in Pacific coast fisheries, are also factors in this trend. Depending on the degree of shelter provided by moorage at the different plant locations, the pollock-focused catcher vessels may tend to tie up at Alaskan shore plants between seasons. Limited moorage for catcher vessels participating in the Alaska groundfish fishery exists in other Alaskan ports (Kodiak, Sand Point), but only to a very limited extent. Catcher vessels delivering to motherships or offshore tend to go to Seattle every year if they participate in the Pacific coast hake fishery. Otherwise, they also tend to stay in Alaskan waters when they do not need major shipyard work and will look for Alaskan fisheries to 'fill in' their annual harvest cycle. This trend has the effect of increasing the use of air flights to connect crew with vessels, so that an indirect effect is to increase the availability of and support for transportation links for various Alaskan fishery communities (a trend also seen to a much larger degree with the 'transient' components of the shore plant workforces). No systematic information on the geographic origin of overall sector employment is available, but interview information developed for the Inshore/Offshore-3 SIA (NPFMC 1998) indicates that for the larger classes of catcher vessels, most of the crew is from the Washington/Oregon area, with a concentration in Seattle. This was true even though many catcher vessels apparently spent most of their time in Alaskan waters and may tie up in Alaskan ports more than in Washington or Oregon. This may reflect an historical situation, before Alaskan moorage was available and boats did return to Seattle every year, combined with continued Washington/Oregon ownership. Catcher vessel expenditure patterns are difficult to generalize. For the smaller vessel classes that tend to be Alaskan in ownership, Alaska-based expenditures are the norm. For the larger classes, in-season operational expenditures are made in Alaskan ports. Catcher vessels tend to tie up in Alaskan waters when possible, but maintenance requiring shipyard work and overhauls tend to take place in or near the owner's physical residence, which in most cases is the Pacific Northwest. Crew tends to reflect the boat's "community of origin" as well, so that the overall revenue flow for most larger catcher vessels is oriented to the Washington/Oregon area, and for the Alaska groundfish
fishery, more specifically to Washington. These economic effects are distributed more widely, and to a wider range of communities, than for the processing sectors considered above. #### APPENDIX F-2. REGIONAL ECONOMIC INDICATORS 1975-1999 Table 1. Total Employment for Alaska Peninsula/Aleutian Islands Region, 1975-1999 | | | No. of | Persons E | mployed l | y Year | | |---|-------|--------|-----------|-----------|--------|-------| | Sector | 1975 | 1980 | 1985 | 1990 | 1995 | 1999 | | Agricultural Services, Forestry, Fishing, and Other | 392 | 497 | 545 | 325a | 63a | а | | Construction | 250 | 125 | 182 | 200 | 119a | а | | Federal, Civilian | 535 | 667 | 685 | 772 | 223 | 53 | | Finance, Insurance, and Real Estate | а | а | 176 | 157 | 202 | 305 | | Manufacturing | 754 | 1,816 | 928 | 1,499a | 3,566 | 2,958 | | Military | 3,330 | 2,410 | 2,505 | 2,897 | 1,073 | 68 | | Mining | 35 | 0 | а | а | а | а | | Retail Trade | а | 130 | 161 | 483 | 533 | 72a | | Service | 77 | 236 | 408 | 358 | 90a | 635a | | State and Local | 263 | 376 | 590 | 690 | 691 | 640 | | Transportation and Public Utilities | а | 134 | 250 | 576 | 463 | 334 | | Wholesale Trade | а | а | а | 72a | 47a | 84a | Note: Where "a" appears in the table, the data is suppressed due to confidentiality reasons, or because there were fewer than ten jobs in that sector during the year indicated. Where an "a" follows a numerical value, one or more of the underlying statistical areas faced disclosure or other limitations. Although the data do not appear in the table, the totals shown in the summary table reflect all available information, which might include estimates of employment and income for unusually small sectors. Table 2. Personal Income and Earnings for Alaska Peninsula/Aleutian Islands Region, 1975-1999 | | | Earr | nings by Y | ear (\$Milli | ons) | | |---|------|------|------------|--------------|-------|-------| | Sector | 1975 | 1980 | 1985 | 1990 | 1995 | 1999 | | Agricultural Services, Forestry, Fishing, and Other | 4.0 | 5.5 | 8.4 | 5.8a | 0.4a | а | | Construction | 8.8 | 6.8 | 11.8 | 15.3 | 6.2a | а | | Federal, Civilian | 6.3 | 14.2 | 15.2 | 21.7 | 9.4 | 3.1 | | Finance, Insurance, and Real Estate | а | а | 3.1 | 3.2 | 3.8 | 4.8 | | Manufacturing | 9.4 | 35.8 | 22.9 | 48.9a | 108.4 | 114.2 | | Military | 43.7 | 44.0 | 70.6 | 91.2 | 40.3 | 1.9 | | Mining | 1.2 | а | а | 0.1 | 0.0 | 0.0 | | Retail Trade | а | 2.1 | 3.1 | 10.9 | 12.4 | 1.6a | | Service | 0.2 | 2.8 | 5.6 | 5.8 | 2.2a | 22.0a | | State and Local | 4.1 | 9.3 | 19.2 | 22.9 | 27.8 | 26.7 | | Transportation and Public Utilities | а | 2.5 | 9.0 | 15.8 | 13.0 | 12.1 | | Wholesale Trade | а | а | а | 4.4a | 2.6a | 4.0 | Table 3. Per Capita Income and Total Employment for Alaska Peninsula/Aleutian Islands Region, 1975-1999 | | Indicator Data by Year | | | | | | | |---|------------------------|----------|----------|----------|----------|----------|--| | Indicator | 1975 | 1980 | 1985 | 1990 | 1995 | 1999 | | | Personal Income (\$Millions) | 77.5 | 110.7 | 155.4 | 246.3 | 215.4 | 187.6 | | | Population (No. of Persons) | 8,523 | 7,813 | 9,734 | 11,974 | 7,195 | 6,092 | | | Per Capita Personal Income (\$) | \$9,089 | \$14,170 | \$15,968 | \$20,568 | \$29,943 | \$30,802 | | | Total Full- and Part-Time Employment (No. of Persons) | 6,035 | 6,572 | 6,494 | 9,202 | 8,313 | 6,378 | | Table 4. Total Employment for Kodiak Island Region, 1975-1999 | | | No. of I | Persons E | mployed b | y Year | | |---|-------|----------|-----------|-----------|--------|-------| | Sector | 1975 | 1980 | 1985 | 1990 | 1995 | 1999 | | Agricultural Services, Forestry, Fishing, and Other | 1,347 | 1,642 | 1,572 | 1,238 | 1,026 | 1,237 | | Construction | 309 | 148 | 407 | 326 | 321 | 271 | | Federal, Civilian | 318 | 282 | 239 | 164 | 161 | 179 | | Finance, Insurance, and Real Estate | 101 | 114 | 180 | 294 | 323 | 311 | | Manufacturing | 1,178 | 2,060 | 1,473 | 2,209 | 2,437 | 1,855 | | Military | 1,894 | 1,387 | 1,122 | 1,181 | 1,143 | 1,019 | | Mining | 0 | 0 | 13 | а | а | а | | Retail Trade | 525 | 711 | 887 | 1,093 | 1,128 | 1,206 | | Service | 567 | 858 | 1,036 | 1,615 | 1,593 | 1,934 | | State and Local | 663 | 745 | 907 | 937 | 922 | 933 | | Transportation and Public Utilities | 260 | 404 | 284 | 399 | 431 | 382 | | Wholesale Trade | 47 | 49 | 54 | 50 | 111 | 65 | Note: Where "a" appears in the table, the data is suppressed due to confidentiality reasons, or because there were fewer than ten jobs in that sector during the year indicated. Although the data do not appear in the table, the totals shown in the summary table reflect all available information, which might include estimates of employment and income for unusually small sectors. Table 5. Personal Income and Earnings for Kodiak Island Region, 1975-1999 | | | Earr | nings by Y | ear (\$Milli | ons) | | |---|------|------|------------|--------------|------|------| | Sector | 1975 | 1980 | 1985 | 1990 | 1995 | 1999 | | Agricultural Services, Forestry, Fishing, and Other | 12.9 | 18.5 | 13.9 | 47.3 | 32.9 | 28.4 | | Construction | 8.4 | 5.2 | 18.4 | 11.3 | 14.1 | 13.5 | | Federal, Civilian | 7.2 | 10.4 | 11.5 | 8.2 | 10.2 | 11.8 | | Finance, Insurance, and Real Estate | 1.5 | 2.7 | 3.2 | 3.2 | 5.3 | 7.0 | | Manufacturing | 15.5 | 37.5 | 21.4 | 51.1 | 64.1 | 59.5 | | Military | 24.7 | 26.3 | 37.4 | 38.5 | 48.0 | 51.6 | | Mining | а | 0.6 | 0.6 | а | 0.1 | 0.1 | | Retail Trade | 6.4 | 11.1 | 16.7 | 19.0 | 20.2 | 21.6 | | Service | 5.3 | 12.5 | 19.3 | 31.1 | 31.2 | 43.7 | | State and Local | 10.6 | 18.0 | 31.1 | 34.5 | 38.4 | 36.1 | | Transportation and Public Utilities | 3.7 | 10.5 | 11.0 | 12.8 | 14.2 | 12.9 | | Wholesale Trade | 0.7 | 0.9 | 1.3 | 1.2 | 4.6 | 2.8 | Note: Where "a" appears in the table, the data is suppressed due to confidentiality reasons, or because there were fewer than ten jobs in that sector during the year indicated. Although the data do not appear in the table, the totals shown in the summary table reflect all available information, which might include estimates of employment and income for unusually small sectors. Table 6. Per Capita Income and Total Employment for Kodiak Island Region, 1975-1999 | | | Indicator Data by Year | | | | | | | |---|----------|------------------------|----------|----------|----------|----------|--|--| | Indicator | 1975 | 1980 | 1985 | 1990 | 1995 | 1999 | | | | Personal Income (\$Millions) | 102.0 | 153.0 | 200.0 | 289.9 | 331.7 | 361.7 | | | | Population (No. of Persons) | 9,153 | 10,004 | 12,243 | 13,400 | 14,883 | 14,350 | | | | Per Capita Personal Income (\$) | \$11,142 | \$15,298 | \$16,340 | \$21,637 | \$22,290 | \$25,204 | | | | Total Full- and Part-Time Employment (No. of Persons) | 7,209 | 8,400 | 8,174 | 9,509 | 9,603 | 9,398 | | | Table 7. Total Employment for Southcentral Region, 1975-1999 | | | No. of | Persons E | mployed b | y Year | | |---|--------|--------|-----------|-----------|--------|--------| | Sector | 1975 | 1980 | 1985 | 1990 | 1995 | 1999 | | Agricultural Services, Forestry, Fishing, and Other | 1,445a | 3,479 | 6,037 | 5,940 | 5,236 | 6,510 | | Construction | 12,041 | 8,307 | 15,858 | 10,295 | 12,251 | 13,882 | | Federal, Civilian | 11,113 | 9,909 | 10,097 | 11,003 | 10,993 | 10,350 | | Finance, Insurance, and Real Estate | 12,497 | 16,593 | 18,078 | 14,567 | 14,789 | 16,604 | | Manufacturing | 3,267 | 4,448 | 5,273 | 6,118 | 6,210 | 5,697 | | Military | 14,439 | 13,286 | 13,467 | 14,382 | 12,749 | 11,547 | | Mining | 2,240a | 3,859a | 6,004 | 7,241 | 5,894a | 5,398 | | Retail Trade | 14,520 | 17,690 | 28,516 | 30,205 | 36,681 | 39,518 | | Service | 22,878 | 28,473 | 43,548 | 51,785 | 60,670 | 69,445 | | State and Local | 13,723 | 15,976 | 21,699 | 22,564 | 24,805 | 25,342 | | Transportation and Public Utilities | 9,347 | 10,582 | 12,786 | 15,817 | 17,398 | 19,798 | | Wholesale Trade | 4,599a | 4,702a | 7,490 | 6,862 | 7,791a | 8,203 | Table 8. Personal Income and Earnings for Southcentral Alaska Region, 1975-1999 | | | Earr | nings by Y | ear (\$Milli | ons) | | |---|-------|--------|------------|--------------|---------|---------| | Sector | 1975 | 1980 | 1985 | 1990 | 1995 | 1999 | | Agricultural Services, Forestry, Fishing, and Other | 10.0a | 38.5 | 86.7 | 146.7 | 84.8 | 88.4 | | Construction | 438.7 | 383.1 | 763.8 | 470.4 | 607.0 | 676.5 | | Federal, Civilian | 211.4 | 292.4 | 387.0 | 513.6 | 646.9 | 715.3 | | Finance, Insurance, and Real Estate | 75.3 | 139.7 | 282.4 | 222.9 | 329.3 | 405.6 | | Manufacturing | 52.1 | 106.3 | 142.5 | 177.8 | 217.1 | 197.5 | | Military | 167.7 | 229.7 | 357.3 | 439.4 | 454.4 | 484.6 | | Mining | 65.1a | 159.9a | 340.6a | 531.0 | 463.1a | 441.9 | | Retail Trade | 176.5 | 273.6 | 580.6 | 588.6 | 710.5 | 831.1 | | Service | 336.0 | 525.4 | 1,013.8 | 1,258.8 | 1,565.7 | 1,965.0 | | State and Local | 240.8 | 467.7 | 881.1 | 931.6 | 1,168.5 | 1,151.7 | | Transportation and Public Utilities | 219.7 | 345.1 | 514.1 | 620.8 | 794.8 | 918.1 | | Wholesale Trade | 92.7a | 134.7a | 256.6 | 237.4 | 271.8a | 304.5 | Table 9. Per Capita Income and Total Employment for Southcentral Alaska Region, 1975-1999 | | Indicator Data by Year | | | | | | | | | |---|------------------------|----------|----------|----------|----------|----------|--|--|--| | Indicator | 1975 | 1980 | 1985 | 1990 | 1995 | 1999 | | | | | Personal Income (\$Millions) | 2,157.7 | 3,555.0 | 6,814.9 | 7,748.5 | 9,701.8 | 11,332.7 | | | | | Population (No. of Persons) | 200,595 | 227,962 | 311,610 | 318,861 | 357,565 | 374,975 | | | | |
Per Capita Personal Income (\$) | \$10,756 | \$15,595 | \$21,870 | \$24,301 | \$27,133 | \$30,222 | | | | | Total Full- and Part-Time Employment (No. of Persons) | 123,047 | 137,944 | 189,391 | 197,286 | 216,092 | 232,770 | | | | Table 10. Total Employment for Southeast Alaska Region, 1975-1999 | | | No. of I | Persons E | mployed l | by Year | | |---|--------|----------|-----------|-----------|---------|--------| | Sector | 1975 | 1980 | 1985 | 1990 | 1995 | 1999 | | Agricultural Services, Forestry, Fishing, and Other | 974a | 2,262 | 3,120 | 3,357 | 3,047 | 2,187a | | Construction | 1217a | 1,677 | 2,729 | 1,914 | 2,663a | 2,788a | | Federal, Civilian | 2,064a | 2,466a | 2,040a | 2,102a | 1,924 | 1,760 | | Finance, Insurance, and Real Estate | 1,170a | 1,808a | 1,702a | 2,303 | 2,442a | 2,120a | | Manufacturing | 3,828a | 4,797 | 3,500 | 5,711 | 4,566 | 3,494a | | Military | 1,365a | 1,183 | 1,010 | 1,315 | 1,261a | 1,147a | | Mining | 39a | 23a | 54a | 131a | 269a | 36a | | Retail Trade | 3,330a | 4,023 | 5,101 | 6,357 | 7,935 | 7,576 | | Service | 3,615a | 5,002a | 6,900a | 9,267a | 11,401 | 13,245 | | State and Local | 6,751 | 7,746 | 9,687 | 9,890 | 10,008 | 10,233 | | Transportation and Public Utilities | 2,122a | 2,604 | 2,174a | 2,911a | 3,361 | 3,141 | | Wholesale Trade | 373a | 327a | 398a | 683a | 629a | 733a | Table 11. Personal Income and Earnings for Southeast Alaska Region, 1975-1999 | | | Earr | ings by Y | ear (\$Milli | ons) | | |---|-------|-------|-----------|--------------|--------|--------| | Sector | 1975 | 1980 | 1985 | 1990 | 1995 | 1999 | | Agricultural Services, Forestry, Fishing, and Other | 8.3a | 26.6 | 59.2 | 77.4 | 61.2 | 33.6a | | Construction | 30.9a | 59.8 | 102.6 | 69.7 | 110.9a | 115.2a | | Federal, Civilian | 38.0 | 67.7 | 82.5 | 105.8 | 122.0 | 124.1 | | Finance, Insurance, and Real Estate | 10.6a | 25.2a | 31.9a | 38.3 | 51.3a | 51.1a | | Manufacturing | 69.6a | 137.7 | 119.3 | 219.5 | 179.9 | 121.4a | | Military | 11.1a | 16.3 | 28.3 | 33.9 | 42.4 | 44.9 | | Mining | 0.8a | 1.6a | 5.3a | 4.0a | 15.8a | 0.7a | | Retail Trade | 36.6 | 56.0 | 94.8 | 108.2 | 151.8 | 149.5 | | Service | 36.4a | 79.7a | 131.0a | 156.0a | 228.4 | 282.7 | | State and Local | 117.9 | 218.9 | 359.4 | 389.2 | 445.6 | 443.8 | | Transportation and Public Utilities | 33.0a | 63.4 | 70.2a | 92.2a | 116.3 | 110.7 | | Wholesale Trade | 7.3a | 8.6a | 12.9a | 22.3a | 20.7a | 22.1a | Table 12. Per Capita Income and Total Employment for Southeast Alaska Region, 1975-1999 | | Indicator Data by Year | | | | | | | | |---|------------------------|----------|----------|----------|----------|----------|--|--| | Indicator | 1975 | 1980 | 1985 | 1990 | 1995 | 1999 | | | | Personal Income (\$Millions) | 467.9 | 878.3 | 1,362.6 | 1,746.5 | 2,073.5 | 2,225.5 | | | | Population (No. of Persons) | 51,907 | 54,385 | 67,562 | 69,490 | 73,401 | 72,525 | | | | Per Capita Personal Income (\$) | \$9,014 | \$16,149 | \$20,168 | \$25,133 | \$28,248 | \$30,686 | | | | Total Full- and Part-Time Employment (No. of Persons) | 27,336 | 34,087 | 38,927 | 46,731 | 49,748 | 50,891 | | | Table 13. Total Employment for Washington Inland Waters Region, 1975-1999 | | No. of Persons Employed by Year | | | | | | | | |---|---------------------------------|---------|---------|---------|---------|----------|--|--| | Sector | 1975 | 1980 | 1985 | 1990 | 1995 | 1999 | | | | Agricultural Services, Forestry, Fishing, and Other | 11,491 | 19,632 | 22,928 | 29,237 | 31,156 | 34,894 | | | | Construction | 48,344 | 75,435 | 83,680 | 119,877 | 122,075 | 152,873 | | | | Federal, Civilian | 46,549 | 51,601 | 53,838 | 57,862 | 53,753 | 51,375 | | | | Finance, Insurance, and Real Estate | 93,062 | 123,356 | 135,175 | 171,918 | 172,389 | 201,593 | | | | Manufacturing | 170,353 | 225,326 | 214,140 | 281,795 | 249,824 | 279,737 | | | | Military | 58,660 | 58,860 | 66,846 | 68,930 | 65,028 | 61,984 | | | | Mining | 807a | 1,689 | 2,101a | 2,401 | 2,610 | 2,358a | | | | Retail Trade | 166,371 | 229,285 | 262,242 | 334,652 | 377,391 | 412,301 | | | | Service | 219,444 | 309,057 | 401,585 | 550,024 | 644,900 | 771,417 | | | | State and Local | 151,864 | 167,992 | 177,954 | 217,910 | 250,270 | 271,223 | | | | Transportation and Public Utilities | 54,781 | 72,418 | 76,759 | 96,327 | 102,339 | 116,516 | | | | Wholesale Trade | 55,782 | 73,016 | 79,190 | 103,100 | 114,285 | 123,083a | | | Table 14. Personal Income and Earnings for Washington Inland Waters Region, 1975-1999 | | Earnings by Year (\$Millions) | | | | | | | | | |---|-------------------------------|---------|---------|----------|----------|----------|--|--|--| | Sector | 1975 | 1980 | 1985 | 1990 | 1995 | 1999 | | | | | Agricultural Services, Forestry, Fishing, and Other | 105.5 | 247.2 | 356.8 | 921.9 | 771.9 | 995.2 | | | | | Construction | 751.0 | 1,705.2 | 2,112.7 | 3,765.5 | 4,223.6 | 6,352.6 | | | | | Federal, Civilian | 808.1 | 1,341.2 | 1,843.8 | 2,395.6 | 2,883.9 | 3,222.8 | | | | | Finance, Insurance, and Real Estate | 609.2 | 1,353.2 | 1,862.0 | 3,152.4 | 4,647.8 | 6,811.5 | | | | | Manufacturing | 2,645.4 | 5,544.1 | 6,693.7 | 10,530.3 | 11,380.9 | 14,784.8 | | | | | Military | 607.8 | 877.5 | 1,654.8 | 1,932.6 | 2,249.8 | 2,523.1 | | | | | Mining | 28.9 | 95.4 | 91.5 | 47.4 | 68.0 | 90.9a | | | | | Retail Trade | 1,316.5 | 2,431.3 | 3,544.4 | 5,086.6 | 6,397.9 | 8,867.1 | | | | | Service | 1,834.2 | 4,015.4 | 6,642.8 | 12,234.7 | 18,129.9 | 34,205.4 | | | | | State and Local | 1,635.6 | 2,906.2 | 4,183.5 | 6,165.4 | 8,676.6 | 10,647.0 | | | | | Transportation and Public Utilities | 878.9 | 1,728.2 | 2,355.0 | 3,522.1 | 5,164.1 | 6,040.6 | | | | | Wholesale Trade | 832.8 | 1,620.9 | 2,136.4 | 3,369.7 | 4,509.5 | 5,760.1a | | | | Table 15. Per Capita Income and Total Employment for Washington Inland Waters Region, 1975-1999 | | Indicator Data by Year | | | | | | | | |---|------------------------|-----------|-----------|-----------|-----------|-----------|--|--| | Indicator | 1975 | 1980 | 1985 | 1990 | 1995 | 1999 | | | | Personal Income (\$Millions) | 15,806.6 | 31,216.0 | 46,122.0 | 72,336.7 | 94,592.5 | 131,449.0 | | | | Population (No. of Persons) | 2,342,398 | 2,703,026 | 2,903,105 | 3,328,588 | 3,651,912 | 3,881,943 | | | | Per Capita Personal Income (\$) | \$6,748 | \$11,549 | \$15,887 | \$21,732 | \$25,902 | \$33,862 | | | | Total Full- and Part-Time Employment (No. of Persons) | 1,094,198 | 1,426,707 | 1,594,370 | 2,050,879 | 2,201,894 | 2,497,196 | | | Table 16. Total Employment for Oregon Coast Region, 1975-1999 | | No. of Persons Employed by Year | | | | | | | | |---|---------------------------------|-------|--------|--------|--------|--------|--|--| | Sector | 1975 | 1980 | 1985 | 1990 | 1995 | 1999 | | | | Agricultural Services, Forestry, Fishing, and Other | 1,234 | 3,418 | 3,256 | 2,608 | 2076a | 2,612 | | | | Construction | 1,192 | 2,039 | 1,874 | 2,310 | 2,899 | 3,618 | | | | Federal, Civilian | 534 | 564 | 507 | 611 | 517 | 564 | | | | Finance, Insurance, and Real Estate | 2,026 | 2,819 | 2,268 | 2,449 | 3,098 | 3,841 | | | | Manufacturing | 6,164 | 7,255 | 6,426 | 6,375 | 6,280 | 6,005 | | | | Military | 1,022 | 986 | 877 | 892 | 892 | 794 | | | | Mining | 76a | 95a | 151a | 91a | 31a | 29a | | | | Retail Trade | 6,498 | 8,472 | 8,588 | 11,209 | 13,015 | 13,252 | | | | Service | 6,216 | 8,484 | 10,161 | 12,205 | 14,590 | 16,971 | | | | State and Local | 5,290 | 5,616 | 5,762 | 6,301 | 6,794 | 7,127 | | | | Transportation and Public Utilities | 1,428 | 1,557 | 1,651 | 1,560 | 1,657 | 1,707 | | | | Wholesale Trade | 390a | 417a | 652 | 881 | 701a | 683a | | | Table 17. Total Non-Farm Earnings for Oregon Coast Region, 1975-1999 | | Earnings by Year (\$Millions) | | | | | | | | |---|-------------------------------|-------|-------|-------|-------|-------|--|--| | Sector | 1975 | 1980 | 1985 | 1990 | 1995 | 1999 | | | | Agricultural Services, Forestry, Fishing, and Other | 8.6 | 26.1 | 28.8 | 45.1 | 29.9a | 40.0 | | | | Construction | 16.3 | 37.3 | 33.0 | 59.4 | 69.4 | 102.8 | | | | Federal, Civilian | 7.9 | 13.1 | 16.4 | 21.7 | 25.0 | 30.6 | | | | Finance, Insurance, and Real Estate | 6.3 | 14.2 | 11.1 | 21.5 | 39.3 | 55.2 | | | | Manufacturing | 80.9 | 149.2 | 165.5 | 199.1 | 201.7 | 218.4 | | | | Military | 8.5 | 12.7 | 16.4 | 17.3 | 22.5 | 23.0 | | | | Mining | 1.0a | 2.7a | 3.9 | 1.6a | а | а | | | | Retail Trade | 42.8 | 75.7 | 95.2 | 139.8 | 178.0 | 206.4 | | | | Service | 38.2 | 79.4 | 113.3 | 177.7 | 248.5 | 329.9 | | | | State and Local | 47.6 | 80.8 | 110.8 | 153.9 | 209.5 | 244.2 | | | | Transportation and Public Utilities | 23.5 | 32.6 | 38.0 | 42.5 | 53.0 | 58.0 | | | | Wholesale Trade | 4.8a | 6.5a | 11.5 | 18.3 | 15.9a | 18.6a | | | Table 18. Per Capita Income and Total Employment for Oregon Coast Region, 1975-1999 | | Indicator Data by Year | | | | | | | |---|------------------------|---------|----------|----------|----------|----------|--| | Indicator | 1975 | 1980 | 1985 | 1990 | 1995 | 1999 | | | Personal Income (\$Millions) | 437.7 | 853.2 | 1,126.0 | 1,535.5 | 1,986.6 | 2,388.0 | | | Population (No. of Persons) | 76,666 | 89,215 | 89,453 | 94,151 | 103,150 | 104,728 | | | Per Capita Personal Income (\$) | \$5,709 | \$9,564 | \$12,588 | \$16,309 | \$19,260 | \$22,802 | | | Total Full- and Part-Time Employment (No. of Persons) | 33,770 | 43,745 | 43,831 | 49,194 | 54,953 | 59,008 | | #### APPENDIX F3: POTENTIAL STELLER SEA LION SUBSISTENCE USE EFFECTS This section presents the recent historical subsistence
harvest of Steller sea lions in Alaska by region, discusses the overall population decline of Steller sea lions and its possible relationship to commercial groundfish fisheries, and assesses the potential effects of the proposed alternatives upon subsistence Steller sea lion harvest and use. The overall conclusion is that, even if a causal linkage exists between the groundfish fishery and declining Steller sea lion populations, the short-term effects of the proposed alternatives on subsistence activities are likely to be insignificant or slightly positive. Alternatives that reduce the commercial groundfish harvest will logically have neutral or positive effects upon Steller sea lion populations. Whether this will increase the subsistence use of the Steller sea lion resource is not clear from the available information. The proposed alternatives will have no negative effects upon subsistence uses of Steller Sea Lions. Historical documented subsistence harvests Steller sea lions are presented in Tables 1 through 4. Most of this information is for years when Steller sea lions were classified as "threatened," before the western stock of Steller sea lions was reclassified as "endangered" in 1997. It should also be clearly noted that the information in the first table is not totally consistent with the other three, which underscores the general lack of precision in the data. What is evident, however, is that the area of heaviest subsistence use of Steller sea lions is in southwestern Alaska, and is concentrated in a relatively few communities. It is also important to note that while subsistence use of other resources is open to a broader spectrum of residents of coastal Alaskan communities, the take of marine mammals is restricted to the Alaska Native portion of the population under the terms of the Marine Mammal Protection Act. Therefore, any subsistence impacts to Stellar Sea Lions would be concentrated among Alaska Native residents of these communities. Tables 1 through 4 document a sharp decline in subsistence harvest in recent years, the same years that have seen an overall decline in the population of Steller Sea Lions. More recent information on the subsistence take of Steller sea lions is not available, due in part to the fact that NMFS did not renew its contract with ADF&G for data collection after 1998. Co-management agreements between federal marine mammal regulators and subsistence user groups are still in development or awaiting final approval (Tom Loughlin, personal communication, 2000). It is reasonable, however, to assume that the trend of decline in harvest has continued in more recent years in parallel with the overall sea lion population decline. Table 1. Documented Subsistence Steller Sea Lion Harvest, Alaskan Coastal Communities | | Total Community | | | | Steller Sea Lion | | | | | |--------------|-----------------|------|-------------------------------------|---------------------|------------------|------------------------|--|--|--| | Community | Region | Year | Subsistence
Harvest (Edible Ibs) | Number
Harvested | Edible lbs | % Community
Harvest | | | | | Alaskanuk | W | 1980 | 431904 | 9 | 1200 | 0.3% | | | | | Quinhagek | W | 1982 | 536584 | 16 | 2286 | 0.4% | | | | | Sitka | SE | 1996 | 1749772 | 2 | 400 | 0.0% | | | | | Chenega Bay | SC | 1993 | 27809 | 12 | 997 | 3.6% | | | | | Nanwalek | SC | 1997 | 42593 | 5 | 1048 | 2.5% | | | | | Tatitluk | SC | 1997 | 322915 | 19 | 3712 | 1.1% | | | | | Akhiok | SW | 1992 | 25735 | 3 | 600 | 2.3% | | | | | Akutan | SW | 1990 | 47397 | 38 | 7688 | 16.2% | | | | | Aleknagik | SW | 1989 | 54079 | 2 | 221 | 0.4% | | | | | Atka | SW | 1994 | 37307 | 44 | 8700 | 23.3% | | | | | False Pass | SW | 1988 | 28586 | 1 | 220 | 0.8% | | | | | Iliamna | SW | 1991 | 82915 | 1 | 130 | 0.2% | | | | | Ivanof Bay | SW | 1989 | 15677 | 1 | 150 | 1.0% | | | | | Manokotak | SW | 1985 | 118337 | 16 | 1639 | 1.4% | | | | | Nikolski | SW | 1990 | 36945 | 26 | 5143 | 13.9% | | | | | Old Harbor | SW | 1997 | 88851 | 37 | 7442 | 8.4% | | | | | Ouzinkie | SW | 1997 | 55015 | 1 | 264 | 0.5% | | | | | Perryville | SW | 1989 | 45729 | 11 | 2067 | 4.5% | | | | | Port Lions | SW | 1993 | 78371 | 2 | 356 | 0.5% | | | | | Saint George | SW | 1994 | 11330 | 3 | 556 | 4.9% | | | | | Saint Paul | SW | 1994 | 131814 | 141 | 28214 | 21.4% | | | | | Unalaska | SW | 1994 | 355081 | 72 | 14423 | 4.1% | | | | Source: ADF&G CPDB, 2000a NOTE: Numbers are for the "most typical" year for which information is available. ADF&G does only limited surveys and subsistence use can vary greatly from year-to-year. Communities with documented use but no harvest are not included. Numbers differ from, and are not included in, ADF&G 1997. Both are estimates based on samples. Table 2. Estimated Subsistence Take of Steller Sea Lions, by Alaska Region | | | Year | | | | | | | | | |------------------------|------|------|------|------|------|------|------|--|--|--| | Community | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | | | | | Southeast Alaska | 6 | 1 | 5 | 0 | 0 | 0 | 8 | | | | | North Pacific Rim | 32 | 35 | 26 | 31 | 14 | 6 | 29 | | | | | Upper Kenai-Cook Inlet | 10 | 11 | 1 | 0 | 3 | 0 | 0 | | | | | Kodiak Iskand | 58 | 58 | 61 | 137 | 60 | 38 | 18 | | | | | South Alaska Peninsula | 2 | 6 | 6 | 8 | 5 | 8 | 9 | | | | | Aleutian Islands | 135 | 124 | 122 | 96 | 58 | 52 | 37 | | | | | Pribilof Islands | 297 | 245 | 193 | 68 | 46 | 56 | 78 | | | | | South Bristol Bay | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | North Bristol Bay | 8 | 7 | 1 | 0 | 0 | 4 | 0 | | | | | TOTAL | 548 | 487 | 415 | 340 | 186 | 164 | 179 | | | | Source: ADF&G 1999 **Table 3. Estimated Subsistence Take of Steller Sea Lions, Aleutian and Pribilof Communities** | | | Year | | | | | | | | | | |--------------|------|------|------|------|------|------|------|--|--|--|--| | Community | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | | | | | | Atka | 39 | 25 | 54 | 40 | 17 | 12 | 17 | | | | | | Akutan | 30 | 23 | 16 | 6 | 16 | 6 | 6 | | | | | | Ivanof Bay | 0 | 4 | 0 | 0 | 2 | 2 | 2 | | | | | | King Cove | 1 | 1 | 4 | 5 | 0 | 4 | 4 | | | | | | Nikolski | 8 | 6 | 0 | 0 | 3 | 3 | 1 | | | | | | Perryville | 1 | 0 | 1 | 3 | 3 | 2 | 1 | | | | | | Saint George | 70 | 19 | 20 | 8 | 8 | 28 | 20 | | | | | | Saint Paul | 227 | 227 | 173 | 60 | 38 | 28 | 58 | | | | | | Unalaska | 59 | 43 | 42 | 47 | 22 | 30 | 13 | | | | | | TOTAL | 434 | 344 | 309 | 166 | 109 | 115 | 122 | | | | | Source: ADF&G 1995, 1996, 1997a, 1997b, 1998, 1999 NOTE: Numbers differ from, and are not included in, ADF&G CPDB, 2000. Both are estimates based on samples. Numbers in this table have been rounded to the nearest integer. Table 4. Estimated Take of Steller Sea Lions, Selected Other Alaskan Communities | | | Year | | | | | | | | | | |------------|------|------|------|------|------|------|------|--|--|--|--| | Community | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | | | | | | Tatitlek | 13 | 5 | 16 | 3 | 5 | 4 | 22 | | | | | | Akhiok | 4 | 0 | 3 | 2 | 7 | 8 | 3 | | | | | | Old Harbor | 46 | 33 | 48 | 113 | 50 | 26 | 13 | | | | | Source: ADF&G 1995, 1996, 1997a, 1997b, 1998, 1999 NOTE: Numbers differ from, and are not included in, ADF&G CPDB, 2000. Both are estimates based on samples. Numbers in this table have been rounded to the nearest integer. The documented Steller sea lion subsistence take is a measure of the past use and reliance upon this resource, and almost certainly does not represent the current harvest, which can be assumed to be much lower. For Atka, Akutan, Saint George, and Saint Paul (and perhaps Unalaska and several other communities) it can be seen that Steller sea lions represented a very significant subsistence resource in terms of relative contribution to overall community subsistence resource consumption The relationship between the existing groundfish fishery and Steller sea lion population dynamics is far from clear, although the alternatives posit a direct linkage between the two (e.g., commercial fisheries are causally linked to sea lion population decline). Since the proposed alternatives decrease fishing relative to the status quo, such a causal linkage would logically result in positive Steller sea lion population effects, and neutral or positive in terms of subsistence use of Steller sea lions. Given the current depressed population of Steller Sea Lions, it is not clear that a slight improvement in their population would be reflected in increased subsistence take. A number of other variables, such as negotiated agreements, and/or other cultural or social variables that may influence long-term subsistence trends may be at work as well. Thus, the potential subsistence effects of most of the proposed alternatives are either neutral or slightly positive. Given the lack of availability of precise information, it is not possible to distinguish degrees of positive subsistence impact among the alternatives, either to order them or to determine whether or not such theoretically positive impacts would rise to a level of significance. Logically, those which reduce commercial groundfish harvest the most would have the most potential benefit for the subsistence use of Steller Sea Lions, but operationally such differences will likely be slight It is clear that if there is a causal relationship between the commercial groundfish fishery and declining Steller sea lion populations that a reduction in commercial groundfish harvest is a prerequisite for the increased subsistence harvest of Steller Sea Lions.